Functions and w\nu\nu-Lindelöf with respect to a hereditary class
Mariam Abuage and A. Kiliçman

Abstract: A collection of a nonempty subsets of is called hereditary class if it is
closed under hereditary property. In this work, we define and study the notion of
some generalizations of -Lindelöf generalized topological spaces with respect to a
hereditary class, namely; -Lindelöf hereditary generalized topological spaces.
Moreover, investigate basic properties of the concepts, its relation to known con-
cepts and its preservation by functions properties.

Subjects: Topology; Pure Mathematics; Foundations and Theorems
Keywords: generalized topological spaces; w\nu\nu-Lindelöf; generalized continuous function
MR Subject classifications: 54A05; 54A08; 54D20

1. Introduction and preliminaries
A lot of attention has been made to study properties of covering in topological spaces, which
include open and different kinds of generalized open sets. Furthermore, several authors have
introduced the generalization of Lindelöf space separately for many reasons and according
to the sets that they are interested in. In this work, we use the notions of generalized
topology and hereditary classes introduced by (Császár, 2002), (Császár, 2005) and (Császár,
2007), respectively. In order to define some of generalizations of -Lindelöf (Qahis,
AlJarrah, & Noiri, 2016), namely; w\nu\nu-Lindelöf hereditary generalized topological spaces.
In literature, (Sarsak, 2012) introduced and studied -Lindelöf sets in generalized topological
spaces. Recently, (Abuage and Kiliçman, 2017) introduced w\nu-Lindelöf generalized topologi-
cal spaces. The notion -Lindelöfness in term of a hereditary classes was studied by (Qahis
et al., 2016).

ABOUT THE AUTHOR
Mariam M. Abuage is a lecturer at the
Department of Mathematics, Faculty of Science
Sabrata University/ Libya. She received her B.Sc.
degree in 2004 from the Department of
Mathematics, Al Zawia University/ Libya, and
obtained her M.Sc. degree in 2010 from Al Zawia
University. In August 2014, she registered as a
post-graduate student at Institute for
Mathematical Research University Putra
Malaysia UPM, to pursue her Doctor of
Philosophy (PhD) in field of Pure Mathematics
(General Topology). Her research interest
involves with generalizations of -Lindelöf in
generalized topological spaces.

PUBLIC INTEREST STATEMENT
Lindelöfness and its generalizations are important
and interesting concepts in topology. Furthermore, Lindelöf and its generalizations have
been done to generalized topological spaces, the
earlier generalizations to generalized covering
properties is -Lindelöf. Recently, the concept of
-Lindelöfness with respect to hereditary class
has been introduced. This paper will introduce
and define one of generalizations of -Lindelöf;
namely, w\nu\nu-Lindelöf with respect to hereditary
class. Some properties and counterexamples are
showed. Functions properties are investigated,
and we proved that the image of a w\nu\nu-Lindelöf
under an almost -continuous function is w\mu\nu-
Lindelöf.
The strategy of using generalized topologies and hereditary classes to extend classical topological concepts has been used by many authors such as (e.g., Császár, 2007; Kim & Min, 2012; Ramasamy, Rajamani, & Inthumathi, 2012; Zahran, El-Saady, & Ghareeb, 2012), among others. Realization of generalized continuous function was introduced by (Császár, 2002), interesting types of functions in generalized topological spaces have been introduced by many mathematicians, such as Al-Omari and Noiri (2012), Al-Omari and Noiri (2013), Min (2009), Min (2010a), and Min (2010b). The purpose of this paper is to study the effect of functions on \(w/H \)-Lindelöf generalized topological spaces. We also show that some functions preserve this property. The main result is that the image of a \(w/H \)-Lindelöf under an almost \((\nu, \mu)\)-continuous function is \(w/H \)-Lindelöf.

Suppose a non-empty set Gayathri, \(P(X_\nu) \) denotes the power set of \(X_\nu \) and \(\nu \) be a non-empty family of \(P(X_\nu) \). The symbol \(\nu \) implies a generalized topology (briefly, \(GTS \)) on \(X_\nu \) (Császár, 2002) if the empty set \(\emptyset \in \nu \) and \(U_\nu \in \nu \) where \(\gamma \in \Omega \) implies \(\bigcup_{\gamma \in \Omega} U_\nu \in \nu \). The pair \((X_\nu, \nu) \) is called generalized topology on \(X_\nu \) (briefly, \(GTS \)) and we always denote it by \(GTS (X_\nu, \nu) \) or \(X_\nu \). Each element of \(GTS \nu \) is said to be \(\nu \)-open set and the complement of \(\nu \)-open set is called \(\nu \)-closed set. Let \(A \) be a subset of a \(GTS (X_\nu, \nu) \), then \(i(\nu)(A) \) denotes the union of all \(\nu \)-open sets contained in \(A \) (resp. denotes the intersection of all \(\nu \)-closed sets containing \(A \)), and \(X_\nu \setminus A \) denotes the complement of \(A \), \(c(\nu)(X_\nu \setminus A) = X_\nu \setminus i(\nu)(A) \). Moreover, \(A \) is said to be \(\nu \)-regular open (resp. \(\nu \)-regular closed) iff \(A = i(\nu)(A) \) (resp. \(A = c(\nu)(A) \)) (Császár, 2008). If a set \(X_\nu \in \nu \), then a \(GTS (X_\nu, \nu) \) is called \(\nu \)-space (Noiri, 2006), and will be denoted by \(\nu \)-space \((X_\nu, \nu) \) or \(\nu \)-space \(X_\nu \) is said to be quasi-topological space (Császár, 2006), if the finite intersection of \(\nu \)-open sets of \(X_\nu \) belongs to \(\nu \) and denoted by \(QTS(X_\nu, \nu) \). \(\beta \subseteq P(X_\nu) \) and \(\emptyset \in \beta \). Then \(\beta \) is called a \(\nu \)-base (Császár, 2004) for \(\nu \) if \((\cup \beta : \beta \subseteq \beta) = \nu \), and we say that \(\nu \) is generated by \(\beta \). A \(GTS (X_\nu, \nu) \) is said to be \(\nu \)-extremely disconnected (Császár, 2004) if the \(\nu \)-closure of every \(\nu \)-open set is \(\nu \)-open. Moreover, a subset \(A \) of a \(GTS (X_\nu, \nu) \) is called \(\nu \)-clopen if it is both \(\nu \)-open and \(\nu \)-closed.

Let \((X_\nu, \nu) \) be a \(GTS \), a cover \(U \) of a subsets of \(X_\nu \) is called \(\nu \)-open cover if the elements of \(U \) are \(\nu \)-open subsets of \(X_\nu \) (Thomas & John, 2012). A \(GTS (X_\nu, \nu) \) is said to be \(\nu \)-Lindelöf (Sarsak, 2012) (resp. \(w/H \)-Lindelöf (Abuage & Kılıçman, 2017)) if for each \(\nu \)-open cover \(U = \{ U_\gamma : \gamma \in \Omega \} \) of \(\Lambda \nu \) admits a countable sub-collection \(\{ U_n : n \in \mathbb{N} \} \) such that \(\Lambda_\nu = \bigcup_{n \in \mathbb{N}} U_n \) (resp. \(\Lambda_\nu = c(\nu)(\bigcup_{n \in \mathbb{N}} U_n) \)), where \(\Lambda_\nu \) is the union of all \(\nu \)-open set in \(X_\nu \).

A non-empty family \(\mathcal{H} \) of subsets of \(X_\nu \) is called a hereditary class (Császár, 2007) if \(A \in \mathcal{H} \) and \(B \subseteq A \) imply that \(B \in \mathcal{H} \) (Kuratowski, 1933). Given a generalized topological space \((X_\nu, \nu) \) with a hereditary class \(\mathcal{H} \), for a subset \(A \) of \(X_\nu \), the generalized local function of \(A \) with respect to \(\mathcal{H} \) and \(\nu \) (Császár, 2007) is defined as follows: \(\nu(A) = \{ x \in X_\nu \mid \mathcal{U} \subseteq \mathcal{H} \} \) and \(\nu(A) = \{ \mathcal{U} : \mathcal{U} \subseteq \mathcal{H} \} \); and the following are defined: \(c(\nu)(A) = \bigcap_{\mathcal{U} \subseteq \mathcal{H}} \mathcal{U} \) and \(\nu(A) = \{ \mathcal{U} : \mathcal{U} \subseteq \mathcal{H} \} \). Each element of \(\nu(A) \) are called \(\nu \)-open and the complement of a \(\nu \)-open set is called \(\nu \)-closed set. It is clear that a subset \(A \) is \(\nu \)-closed if and only if \(\Lambda_\nu \subseteq \Lambda_\nu \). If the hereditary class \(\mathcal{H} \) satisfies the additional condition: if \(A, B \in \mathcal{H} \) implies \(A \cup B \in \mathcal{H} \), then \(\mathcal{H} \) is called an ideal on \(X_\nu \) (Kuratowski, 1933). We call \((X_\nu, \nu, \mathcal{H}) \) a hereditary generalized topological space and denoted by \(\mathcal{H}GTS X_\nu \) or simply \(X_\nu \). Let a \(GTS (X_\nu, \nu) \), we denoted by \(\mathcal{H}_e \) the hereditary class of countable subsets of \(X_\nu \).

Definition 3.1 (Sarsak, 2012) Let \((X_\nu, \nu) \) and \(A \subseteq X_\nu \). Then a collection \(\{ U \cap A : U \in \nu \} \) is said to be generalized topology on \(A \), and denote by \(\nu(A) \). A \(GTS \nu(A) \) on \(A \) forms a generalized topological subspace of \(X_\nu \), denoted by \((A, \nu(A)) \).
Let \((X_\nu, \nu, \mathcal{H})\) be a \(\mathcal{H}GTS\) and \(A \subseteq X_\nu\), \(A \neq \emptyset\). We denote by \(\mathcal{H}_A\) the collection
\[\{H \cap (A \cap \Lambda_n) : H \in \mathcal{H}\}\]
and by \((A, \nu(A))\) the subspace of \((X_\nu, \nu)\) on \(A\).

Definition 3.2 (Qahis et al., 2016) Let \((X_\nu, \nu)\) be a \(\mathcal{GTS}\) and \(\mathcal{H}\) be a hereditary class on \(X_\nu\). A \(\mathcal{H}GTS\) \((X_\nu, \nu, \mathcal{H})\) is called \(\nu\)-Lindelöf or \(\nu\)-Lindelöf respect to a hereditary class on \(X_\nu\) if each \(\nu\)-open cover \(\{U_\gamma : \gamma \in \Omega\}\) of \(\Lambda_n\) has a countable subcollection \(\{U_{i_n} : n \in \mathbb{N}\}\) such that \(\Lambda_n \setminus \bigcup_{n \in \mathbb{N}} U_{i_n} \in \mathcal{H}\).

Lemma 3.3 (Császár, 2008)

(a) If \(\mathcal{F}\) is \(\nu\)-closed set then \(i_\nu(\mathcal{F})\) is \(\nu\)-regular open.

(b) If \(\mathcal{U}\) is \(\nu\)-open set then \(c_{\nu}(\mathcal{U})\) is \(\nu\)-regular closed.

Theorem 3.4 (Császár, 2007) Let \((X_\nu, \nu)\) be a \(\mathcal{GTS}\) and \(\mathcal{H}\) be a hereditary class on \(X_\nu\)

(i) A \(\mathcal{GTS}\) \(\nu\)-finer than \(\nu\).

(ii) If \(\mathcal{A}\) be a subset of \(X_\nu\), then \(\mathcal{A}^{\nu} \subseteq c_{\nu}(\mathcal{A})\).

Theorem 3.5 (Császár, 2007) Let \((X_\nu, \nu)\) be a \(\mathcal{GTS}\) and \(\mathcal{H}\) be a hereditary class on \(X_\nu\) and \(\mathcal{U}\) be a subset of \(X_\nu\). If \(\mathcal{U}\) is \(\nu\)-open, then for each \(x \in \mathcal{U}\) there is \(\mathcal{U} \subseteq \nu\) and \(\mathcal{H} \in \mathcal{H}\) such that \(x \in \mathcal{U} \cap \mathcal{H} \subseteq \mathcal{U}\).

Lemma 3.6 (Carpintero, Rosas, Salas-Brown, & Sanabria, 2016) Let a function \(g : (X_\nu, \nu) \rightarrow (Y_\mu, \mu)\). If \(\mathcal{H}\) is a hereditary class on \(X_\nu\), then \(g(\mathcal{H})\) is a hereditary class on \(Y_\mu\).

2. \(w_\nu\)-Lindelöf with respect to a hereditary class \(\mathcal{H}\)

The following concepts give a characterization of \(w_\nu\mathcal{H}\)-Lindelöf.

Definition 4.1 Let \((X_\nu, \nu)\) be a \(\mathcal{GTS}\) and \(\mathcal{H}\) be a hereditary class on \(X_\nu\). A \(\mathcal{H}GTS\) \((X_\nu, \nu, \mathcal{H})\) is said to be \(w_\nu\mathcal{H}\)-Lindelöf or \(\nu\mathcal{H}\)-Lindelöf respect to a hereditary class on \(X_\nu\) if each \(\nu\)-open cover \(\{U_\gamma : \gamma \in \Omega\}\) of \(\Lambda_n\) has a countable subcollection \(\{U_{i_n} : n \in \mathbb{N}\}\) such that \(\Lambda_n \setminus \bigcup_{n \in \mathbb{N}} U_{i_n} \in \mathcal{H}\).

Proposition 4.1 A \(\mathcal{H}GTS\) \((X_\nu, \nu, \mathcal{H})\) is \(w_\nu\mathcal{H}\)-Lindelöf if and only if every collection \(\{\mathcal{F}_\gamma : \gamma \in \Omega\}\) of \(\nu\)-closed sets of \(X_\nu\) such that \((\bigcap_{\gamma \in \Omega} \mathcal{F}_\gamma) \cap \Lambda_n = \emptyset\) admits a countable sub-collection \(\{\mathcal{F}_{i_n} : n \in \mathbb{N}\}\) such that \(i_\nu(\bigcap_{n \in \mathbb{N}} \mathcal{F}_{i_n}) \cap \Lambda_n \in \mathcal{H}\).

Proof. Necessity. Let \(\{\mathcal{F}_\gamma : \gamma \in \Omega\}\) be a collection of \(\nu\)-closed sets of \(X_\nu\) such that \((\bigcap_{\gamma \in \Omega} \mathcal{F}_\gamma) \cap \Lambda_n = \emptyset\), i.e., the collection \(\{X_\nu \setminus \mathcal{F}_\gamma : \gamma \in \Omega\}\) is a \(\nu\)-open cover of \(\Lambda_n\).

Since \(X_\nu\) is \(w_\nu\mathcal{H}\)-Lindelöf, there is a countable sub-collection \(\{X_\nu \setminus \mathcal{F}_{i_n} : n \in \mathbb{N}\}\) such that \(\Lambda_n \setminus \bigcup_{n \in \mathbb{N}} (X_\nu \setminus \mathcal{F}_{i_n}) \in \mathcal{H}\).

Thus
\[
\Lambda_n \setminus (c_{\nu}(\bigcup_{n \in \mathbb{N}} (X_\nu \setminus \mathcal{F}_{i_n}))) = \Lambda_n \setminus (c_{\nu}(X_\nu \setminus (\bigcap_{n \in \mathbb{N}} \mathcal{F}_{i_n}))) = \Lambda_n \setminus (X_\nu \setminus i_\nu(\bigcap_{n \in \mathbb{N}} \mathcal{F}_{i_n})) = \mathcal{H}.
\]

It is obviously to show that;
\[
\Lambda_n \setminus i_\nu(\bigcap_{n \in \mathbb{N}} \mathcal{F}_{i_n}) = \Lambda_n \setminus (X_\nu \setminus i_\nu(\bigcap_{n \in \mathbb{N}} \mathcal{F}_{i_n})) \in \mathcal{H}.
\]
Sufficiency. Suppose \(\{ U_\gamma : \gamma \in \Omega \} \) be a \(\nu \)-open cover of \(\Lambda_\nu \), then \(\Lambda_\nu = \bigcup U_\gamma \) and \(\bigcup_{\gamma \in \Omega} U_\gamma \) is a collection of \(\nu \)-closed sets of \(X_\nu \). Thus, \(\bigcup_{\gamma \in \Omega} U_\gamma \cap \Lambda_\nu = \emptyset \), i.e., \(\bigcup_{\gamma \in \Omega} (X_\nu \setminus U_\gamma) \cap \Lambda_\nu = \emptyset \). By hypothesis, there is a countable sub-collection \(\{ X_\nu \setminus U_n : n \in \mathbb{N} \} \) such that
\[
\bigcap_{n \in \mathbb{N}} (X_\nu \setminus U_n) \cap \Lambda_\nu = \emptyset.
\]
Then,
\[
\Lambda_\nu \setminus (X_\nu \setminus U_n) = \Lambda_\nu \setminus (\bigcup_{n \in \mathbb{N}} U_n) \in \mathcal{H}.
\]
Which implies that a \(\mathcal{H}_{\text{GTS}} (X_\nu, \nu, \mathcal{H}) \) is a \(\mathcal{H} \)-Lindelöf.

Proposition 4.2 Let \((X_\nu, \nu) \) be a \(\mathcal{GTS} \) with a hereditary class \(\mathcal{H} \), then \((X_\nu, \nu) \) is \(\mathcal{H} \)-Lindelöf if and only if \((X_\nu, \nu, \mathcal{H}) \) is \(\mathcal{H} \)-\(\mathcal{H}_{\text{GTS}} \).

Proof. The necessity is obvious. Sufficiency, suppose \((X_\nu, \nu, \mathcal{H}) \) is \(\mathcal{H} \)-Lindelöf \(\mathcal{H}_{\text{GTS}} \). Let \(\{ U_\gamma : \gamma \in \Omega \} \) be a \(\nu \)-open cover of \(\Lambda_\nu \). Then by hypothesis, there is a countable sub-collection \(\{ U_n : n \in \mathbb{N} \} \) such that
\[
\bigcap_{n \in \mathbb{N}} (U_n) \cap \Lambda_\nu = \emptyset.
\]
Assume, \(\Lambda_\nu \setminus (\bigcup_{n \in \mathbb{N}} U_n) = \{ x_i : i \in \mathbb{N} \} \), pick out \(U_n \) such that \(x_i \in U_n \), for each \(i \in \mathbb{N} \). Thus,
\[
\Lambda_\nu = (\bigcup_{n \in \mathbb{N}} U_n) \cup (\bigcup_{i \in \mathbb{N}} U_n).
\]
This implies that a \(X_\nu \) is \(\mathcal{H} \)-Lindelöf \(\mathcal{GTS} \).

By proposition above, it is clear that a \(\mathcal{GTS} (X_\nu, \nu) \) is \(\mathcal{H} \)-Lindelöf if and only if \((X_\nu, \nu, \{ 0 \}) \) is \(\mathcal{H} \)-Lindelöf \(\mathcal{GTS} \).

Proposition 4.3 A \(\mathcal{H}_{\text{GTS}} (X_\nu, \nu, \mathcal{H}) \) is \(\nu \mathcal{H} \)-Lindelöf then it is \(\mathcal{H} \)-Lindelöf \(\mathcal{GTS} \).

Proof. Let \(\{ U_\gamma : \gamma \in \Omega \} \) be a \(\nu \)-open cover of \(\Lambda_\nu \). Since a \(\mathcal{H}_{\text{GTS}} (X_\nu, \nu, \mathcal{H}) \) is \(\nu \mathcal{H} \)-Lindelöf then there is a countable sub-collection \(\{ U_n : n \in \mathbb{N} \} \) such that
\[
\Lambda_\nu \setminus (\bigcup_{n \in \mathbb{N}} U_n) \in \mathcal{H}.
\]
But, \(\Lambda_\nu \setminus (\bigcup_{n \in \mathbb{N}} U_n) \subseteq \Lambda_\nu \setminus (\bigcup_{n \in \mathbb{N}} U_n) \subseteq \mathcal{H} \). So, \(\Lambda_\nu \setminus (\bigcup_{n \in \mathbb{N}} U_n) \in \mathcal{H} \), and the proof is completed.

The converse of above proposition is not true as the following example shows:

Example 4.1 Let \(\mathbb{R} \) be the real set, choose \(a \in \mathbb{R}, \beta = \{ \{ a \}, x \in \mathbb{R}, a \neq x \} \) and a hereditary class \(\mathcal{H} = \{ \emptyset, \mathbb{R} \} \). If the \(\mathcal{GTS} \) generated on \(\mathbb{R} \) by the \(\nu \)-base \(\beta \), then \(\mathcal{GTS} (\mathbb{R}, \nu, \emptyset, \mathcal{H}) \) is a \(\mathcal{H}_{\text{GTS}} \), and for each non-empty \(\nu \)-open set \(U \) of \(\mathbb{R} \), we have \(cU = \mathbb{R} \). So, each \(\nu \)-open cover \(\{ U_\gamma : \gamma \in \Omega \} \) of \(\mathbb{R} \), there is a countable sub-collection \(\{ U_n : n \in \mathbb{N} \} \) such that
\[
\mathbb{R} \setminus (\bigcup_{n \in \mathbb{N}} U_n) \in \mathcal{H}.
\]
Thus, \(\mathcal{H}_{\text{GTS}} (\mathbb{R}, \nu, \emptyset, \mathcal{H}) \) is \(\mathcal{H} \)-Lindelöf. Now, \(U = \{ 0, x \} \) is a \(\nu \)-open cover of \(\mathbb{R} \) and let \(\{ 0, x_n \} : n \in \mathbb{N} \) be a countable sub-collection of \(U \), it follows that \(\mathbb{R} \setminus (\bigcup_{n \in \mathbb{N}} 0, x_n) \notin \mathcal{H} \). Therefore, a \(\mathcal{H}_{\text{GTS}} (\mathbb{R}, \nu, \emptyset, \mathcal{H}) \) is not \(\nu \mathcal{H} \)-Lindelöf.
In the following proposition, we will show that a \(\nu \)-Lindelöf with respect to hereditary classes is special case of \(w_\nu \)-Lindelöf \(GTS \).

Proposition 4.4 Let a \(GTS \) \((X_\gamma, \nu) \).

(i) \((X_\gamma, \nu) \) is \(w_\nu \)-Lindelöf if and only if \((X_\gamma, \nu, H_n) \) is \(\nu H_n \)-Lindelöf.

(ii) \((X_\gamma, \nu) \) is \(w_\nu \)-Lindelöf if and only if \((X_\gamma, \nu, H) \) is \(\nu H \)-Lindelöf with a \(\nu \)-codense hereditary class \(H \).

Proof. (i) \((\Rightarrow) \) Let \((X_\gamma, \nu) \) is \(w_\nu \)-Lindelöf and \(\{ U_\gamma : \gamma \in \Omega \} \) be a \(\nu \)-open cover of \(\Lambda \). Thus there is a countable sub-collection \(\{ U_{\gamma n} : n \in \mathbb{N} \} \) such that \(\Lambda \setminus \bigcup_{n \in \mathbb{N}} U_{\gamma n} = \emptyset \). Which implies that,
\[\Lambda \setminus \bigcup_{n \in \mathbb{N}} U_{\gamma n} = \emptyset, \]
so, \(\Lambda \setminus \bigcup_{n \in \mathbb{N}} U_{\gamma n} \in H_n \). Which proves that a \(HGTS \) \((X_\gamma, \nu, H_n) \) is \(\nu H_n \)-Lindelöf.

\((\Leftarrow) \) Suppose \((X_\gamma, \nu, H_n) \) is \(\nu H_n \)-Lindelöf and let \(\{ U_\gamma : \gamma \in \Omega \} \) be a \(\nu \)-open cover of \(\Lambda \). Thus there is a countable sub-collection \(\{ U_{\gamma n} : n \in \mathbb{N} \} \) such that \(\Lambda \setminus \bigcup_{n \in \mathbb{N}} U_{\gamma n} \in H_n \).

This implies that \(\bigcup_{n \in \mathbb{N}} U_{\gamma n} \)

(ii) \((\Rightarrow) \) From (i) \(H \) is a \(\nu \)-codense hereditary class.

\((\Leftarrow) \) Let \((X_\gamma, \nu, H) \) is \(\nu H \)-Lindelöf and \(\{ U_\gamma : \gamma \in \Omega \} \) be a \(\nu \)-open cover of \(\Lambda \). Thus there is a countable sub-collection \(\{ U_{\gamma n} : n \in \mathbb{N} \} \) such that \(\Lambda \setminus \bigcup_{n \in \mathbb{N}} U_{\gamma n} \in H \).

Since a hereditary class \(H \) is \(\nu \)-codense on \(X_\gamma \), \(\Lambda \setminus \bigcup_{n \in \mathbb{N}} U_{\gamma n} \) has empty \(\nu \)-interior, then \(\Lambda \setminus \bigcup_{n \in \mathbb{N}} U_{\gamma n} \). Which implies that \((X_\gamma, \nu) \) is \(w_\nu \)-Lindelöf \(GTS \).

Proposition 4.5 Let \((X_\gamma, \nu, H) \) be a \(w_\nu H \)-Lindelöf \(HGTS \) and \(A \) is a \(\nu \)-clopen subset of \(X_\gamma \). Then \((A, \nu(A), H\Lambda) \) is \(w_\nu \)-(\(\Lambda H \))-Lindelöf.

Proof. Let \(A \) be a \(\nu \)-clopen subset of \(X_\gamma \). If \(\{ U_\gamma : \gamma \in \Omega \} \) be a \(\nu(A) \)-open cover of \(A \). Hence the family \(\{ U_\gamma : \gamma \in \Omega \} \cup (X_\gamma \setminus A) \) forms a \(\nu \)-open cover of \(\Lambda \). Since \(X_\gamma \) is an \(w_\nu H \)-Lindelöf space, then there is a countable subfamily \(\{ U_{\gamma n} : n \in \mathbb{N} \} \cup (X_\gamma \setminus A) \) such that \(\Lambda \setminus \bigcup_{n \in \mathbb{N}} (U_{\gamma n}) \cup (X_\gamma \setminus A) = H \in H \).

Now,
\[A \cap H = A \cap \Lambda \setminus \bigcup_{n \in \mathbb{N}} (U_{\gamma n}) \cup (X_\gamma \setminus A) \]
\[= A \cap \Lambda \setminus \bigcup_{n \in \mathbb{N}} (U_{\gamma n}) \cap \Lambda \setminus (X_\gamma \setminus A) \]
\[= A \cap \Lambda \setminus \bigcup_{n \in \mathbb{N}} (U_{\gamma n}) \cap A \cap \Lambda \]
\[= A \cap \Lambda \setminus \bigcup_{n \in \mathbb{N}} (U_{\gamma n}) \cap A = A \cap \Lambda \setminus \bigcup_{n \in \mathbb{N}} (U_{\gamma n}) \]
Therefore, we have \(\mu\)-Lindelöf. Therefore, a \(\nu\)-space is not \(\mu\)-Lindelöf if and only if \(\mu\)-closed (\(\nu\)-open) set is \(\mu\)-closed set. Thus, every \(\nu\)-open set is \(\nu\)-closed set.

In the following example, we show that the converse of Proposition 4.6 is not true.

Example 4.2 Let \(\mathbb{R} \) be the set of real numbers and \(\nu = \{ U \subseteq \mathbb{R} : U \) is uncountable \} \} be a \(\mathcal{GT} \) on \(\mathbb{R} \). Suppose \(\mathcal{H} = \{ \{ U \subseteq \mathbb{R} : U \in \nu \} \} \) be a hereditary class on \(\mathbb{R} \), observe that \(\mathcal{H} \) is not closed under countable union. A \(\nu\)-space \(\mathcal{H} \) is \(\nu\)-Lindelöf (see Qahis et al., 2016) so it is \(\nu\)-Lindelöf. Now, for each \(x \in \mathbb{R}, \{ x \} \) is \(\nu\)-open. Further, \(\{ x \} \) is \(\nu\)-closed set so it is \(\nu\)-closed, and hence \(\mathcal{C}_x^\nu(\{ x \}) = \{ x \} \). Furthermore, \(\{ \{ x \} : x \in \mathbb{R} \} \) is a \(\nu\)-open cover of a \(\nu\)-space \(\mathbb{R} \). Assume that there is a countable collection \(\{ \{ x_i \} : i \in \mathbb{N} \} \) such that \(\mathbb{R} \setminus \bigcup_{i \in \mathbb{N}} \{ x_i \} \in \mathcal{H} \). And this is not possible. Therefore, a \(\nu\)-space \(\mathbb{R} \) is not \(\nu\)-Lindelöf.

The converse of Proposition 4.6 will be hold if a hereditary class \(\mathcal{H} \) is closed under countable union as the following:

Proposition 4.7 Let \((X_n, \nu) \) be a \(\nu\)-space and a hereditary class \(\mathcal{H} \) on \(X_n \) is closed under countable union, then \((X_n, \nu, \mathcal{H}) \) is \(\nu\)-Lindelöf if and only if \((X_n, \nu, \mathcal{H}) \) is \(\nu\)-Lindelöf \(\mathcal{H} \)\(\mathcal{GTS} \).

Proof. The necessity is obviously by Proposition 4.6. For sufficiency, suppose a \((X_n, \nu, \mathcal{H}) \) is \(\nu\)-Lindelöf and \(\mathcal{H} \) is closed under countable union. Given \(\{ U_{x, \gamma} : \gamma \in \Omega \} \) a \(\nu\)-open cover of \(X_n \), then for each \(x \in X_n, \gamma \in \Omega \), \(x \in U_{x, \gamma} \) for some \(x \in \Omega \). By Theorem 3.5, there is \(U_{x, \gamma} \in \nu \) and \(H_{x, \gamma} \in \mathcal{H} \) such that \(x \in U_{x, \gamma}, H_{x, \gamma} \subseteq U_{x, \gamma} \). Since the collection \(\{ U_{x, \gamma} : \gamma \in \Omega \} \) is a \(\nu\)-open cover of \(X_n \), then there exists a countable sub-collection \(\{ U_{x, \gamma} : n \in \mathbb{N} \} \) such that \(X_n \setminus \bigcup_{n \in \mathbb{N}} U_{x, \gamma} = \emptyset \in \mathcal{H} \).

Since \(\mathcal{H} \) is closed under countable union, then \(\bigcup_{n \in \mathbb{N}} H_{x, \gamma} = H \in \mathcal{H} \). Then, \(\mathcal{H} \cup \bigcup_{n \in \mathbb{N}} H_{x, \gamma} = \mathcal{H} \). Note that \(\mathcal{X}_n \setminus \bigcup_{n \in \mathbb{N}} U_{x, \gamma} = \mathcal{H} \cup \bigcup_{n \in \mathbb{N}} H_{x, \gamma} \in \mathcal{H} \).

Therefore, \((X_n, \nu, \mathcal{H}) \) is \(\nu\)-Lindelöf \(\mathcal{H} \)\(\mathcal{GTS} \).

2.1. Function properties on \(\nu\)-Lindelöf with respect to a hereditary class \(\mathcal{H} \)

Attention has been made to study properties of covering in topological spaces was introduced by (Császár, 2002). Let \(\nu \) and \(\mu \) be generalized topologies on \(X_n \) and \(Y_n \), respectively. Then a function \(g : (X_n, \nu) \rightarrow (Y_n, \mu) \) from a \(\nu\)-space \((X_n, \nu) \) into a \(\mu\)-space \((Y_n, \mu) \) is called \((\nu, \mu) \)-continuous iff \(U \in \mu \) implies that \(g^{-1}(U) \in \nu \).
Definition 4.2 Let A be a subset of $\mathcal{GT}(X,\nu)$, then A is called ν-preopen (resp. $\nu - \beta$-open) (Császár, 2005) if $A \subseteq \mathcal{C}_\nu(A)$ (resp. $A \subseteq \mathcal{C}_\nu\mathcal{C}_\mu(A)$).

The complement of ν-preopen (resp. $\nu - \beta$-open) is said to be ν-preclosed (resp. $\nu - \beta$-closed). We denote by π the class of all ν-preopen sets in X, by β the class of all $\nu - \beta$-open sets in X.

Definition 4.3 A function $g: (X,\nu) \rightarrow (Y,\mu)$ is called:

(1) almost (ν,μ)-continuous (Min, 2009), if for each $t \in X$ and each μ-open set U containing $g(t)$, there is a ν-open set V with $t \in V$ such that $g(V) \subseteq \mathcal{C}_\nu(U)$.

(2) almost (π,μ) continuous (resp. almost (β,μ)-continuous) (Abuage, Kiliman, & Sarsak, 2017) if for each $t \in X$ and each μ-regular open set U in Y containing $g(t)$, there is an ν-preopen (resp. $\nu - \beta$-open) set V containing t such that $g(V) \subseteq U$.

Remark 4.1 Let $g: (X,\nu) \rightarrow (Y,\mu)$ be a function between \mathcal{GT}'s (X,ν) and (Y,μ). Then we have the following implications but the reverse relations may not be true in general:

almost (ν,μ) continuous \Rightarrow almost (π,μ) continuous \Rightarrow almost (β,μ) continuous

Example 4.3 Let $X = \{a,b,c\}$ and $\nu = \{\emptyset,\{a\},\{b\}\}$ be a \mathcal{GT} on X. Then $\pi = \nu \cup \{\{a\},\{b\}\}$. Define a function $g: (X,\nu) \rightarrow (X,\nu)$ as follows: $g(a) = a, g(b) = g(c) = c$. Then g is almost (π,μ)-continuous but not almost (ν,μ)-continuous.

Example 4.4 Let $X = \{a,b,c\}$ and $\nu = \{\emptyset,\{a\},\{a,b\}\}$ be a \mathcal{GT} on X. Then $\pi = \nu$ and $\beta = \nu \cup \{\{a\},\{a,c\},X\}$. Consider a function $g: (X,\nu) \rightarrow (X,\nu)$ defined by $g(a) = g(b) = b, g(c) = a$. Then g is almost (β,μ)-continuous function without begin almost (π,μ)-continuous.

Proposition 4.8 Let $g: (X,\nu) \rightarrow (Y,\mu)$ be an almost (ν,μ)-continuous surjection from a ν-space (X,ν) into a μ-space (Y,μ), and \mathcal{H} be a hereditary class on X. If X is \mathcal{H}-Lindelöf then Y so is.

Proof. Let $\{U_\gamma : \gamma \in \Omega\}$ be a μ-open cover of Y. Since g is almost (ν,μ)-continuous, that means $g^{-1}(i_c(\mathcal{C}_\mu(U_\gamma)))$ is ν-open in X. Thus $\{g^{-1}(i_c(\mathcal{C}_\mu(U_\gamma))) : \gamma \in \Omega\}$ is a ν-open cover of X, then there is a countable sub-collection $\{g^{-1}(i_c(\mathcal{C}_\mu(U_\gamma))) : n \in \mathbb{N}\}$ such that

\[X \setminus g^{-1}(i_c(\mathcal{C}_\mu(U_{\gamma_n}))) \in \mathcal{H} \]

Now;

\[X \setminus (\bigcup_{n \in \mathbb{N}} g^{-1}(i_c(\mathcal{C}_\mu(U_{\gamma_n})))) = \bigcap_{n \in \mathbb{N}} X \setminus (\bigcup_{n \in \mathbb{N}} g^{-1}(i_c(\mathcal{C}_\mu(U_{\gamma_n}))))
\]

\[\subseteq X \setminus (\bigcup_{n \in \mathbb{N}} g^{-1}(i_c(\mathcal{C}_\mu(U_{\gamma_n}))))
\]

By Lemma 3.3 $c_i(\bigcup_{n \in \mathbb{N}}(U_{\gamma_n}))$ is μ-regular closed in Y and g is almost (ν,μ) continuous, we have $g^{-1}(c_i(\bigcup_{n \in \mathbb{N}}(U_{\gamma_n})))$ is ν-closed in X. Thus

\[X \setminus g^{-1}(\bigcup_{n \in \mathbb{N}}(U_{\gamma_n})) = \bigcap_{n \in \mathbb{N}} (X \setminus (\bigcup_{n \in \mathbb{N}} g^{-1}(i_c(\mathcal{C}_\mu(U_{\gamma_n}))))) \in \mathcal{H}.
\]
By Lemma 3.6,
\[
g(X_0 \setminus (g^{-1}(c_\nu(\bigcup_{n \in \mathbb{N}} (U_n)))))) = g(X_0 \setminus (g(g^{-1}(c_\nu(\bigcup_{n \in \mathbb{N}} (U_n))))))
\]
\[
= Y_0 \setminus (c_\nu(\bigcup_{n \in \mathbb{N}} (U_n))) \in g(\mathcal{H}).
\]

Which proves that a \(\mathcal{GTS} Y_0 \) is \(w_\mu g(\mathcal{H}) \)-Lindelöf.

If \(\mathcal{H} = \{ \emptyset \} \) in the above Proposition, then we have the following result:

Corollary 4.1 (Abuage \& Kiliçman, 2017) Let \(g : (X_0, \nu) \rightarrow (Y_0, \mu) \) be an almost \((\nu, \mu)\)-continuous surjection from a \(\nu \)-space \((X_0, \nu) \) into a \(\mu \)-space \((Y_0, \mu) \), if a \(\nu \)-space \(X_0 \) is \(w_{\nu} \)-Lindelöf then a \(\mu \)-space \(Y_0 \) so is.

Theorem 4.4 (Ekici, 2012) Let \((X_0, \nu) \) be a \(\mathcal{GTS} \) where \(c_\nu(0) = 0 \). Then \((X_0, \nu) \) is a submaximal and extremally disconnected \(\mathcal{GTS} \) if any subset of \((X_0, \nu) \) is \(\nu - \beta \)-open if and only if it is \(\nu \)-open.

Obviously, if \(X_0 \in \nu \) in \(\mathcal{GTS}(X_0, \nu) \) then \(c_\nu(0) = 0 \), so the following proposition proves immediately by Theorem 4.4.

Proposition 4.9 Let \((X_0, \nu) \) be a submaximal and \(\nu \)-extremally disconnected \(\nu \)-space. Then a function \(g : (X_0, \nu) \rightarrow (Y_0, \mu) \) is an almost \((\nu, \mu)\)-continuous if and only if it is almost \((\beta, \mu)\)-continuous.

Corollary 4.2 Let \(g : (X_0, \nu) \rightarrow (Y_0, \mu) \) be an almost \((\beta, \mu)\)-continuous surjection, and \(\mathcal{H} \) be a hereditary class on \(X_0 \). If \(X_0 \) is submaximal, \(\nu \)-extremally disconnected and \(w_{\mathcal{H}} \)-Lindelöf \(\nu \)-space. Then \(Y_0 \) is \(w_\mu g(\mathcal{H}) \)-Lindelöf.

Proof. The proof follows directly from Proposition 4.8 and Proposition 4.9.

Lemma 4.5 Let \((X_0, \nu) \) be a submaximal \(\mathcal{GTS} \) then every \(\nu \)-preopen set is \(\nu \)-open.

Proof. Assume, a subset \(V \) is a \(\nu \)-preopen, then by Proposition 3.11 (Sarsak, 2013) \(V = U \cap A \) for some \(\nu \)-regular open set \(U \) and \(\nu \)-dense set \(A \) of \(X_0 \). Since \((X_0, \nu) \) is submaximal \(\mathcal{GTS} \), so \(A \) is \(\nu \)-open set of \(X_0 \) and thus \(V \) is \(\nu \)-open set of \(X_0 \).

Next proposition proves directly, by Lemma 4.5, so the proof omitted.

Proposition 4.10 Let \((X_0, \nu) \) be a submaximal \(\mathcal{GTS} \) then a function \(g : (X_0, \nu) \rightarrow (Y_0, \mu) \) is an almost \((\nu, \mu)\)-continuous if and only if it is almost \((\pi, \mu)\)-continuous.

By Propositions 4.8 and Proposition 4.10 the following corollary concluded:

Corollary 4.3 Let \(g : (X_0, \nu) \rightarrow (Y_0, \mu) \) be an almost \((\pi, \mu)\)-continuous surjection, and \(\mathcal{H} \) be a hereditary class on \(X_0 \). If a space \(X_0 \) is submaximal and weakly Lindelöf then \(Y_0 \) is \(w_\mu g(\mathcal{H}) \)-Lindelöf.

Definition 4.6 (Al-Omari \& Noiri, 2012) A function \(g : (X_0, \nu) \rightarrow (Y_0, \mu) \) is said to be

(a) almost \((\nu, \mu)\)-open if \(g(V) \subseteq \bigcup \pi c_\mu(g(V)) \) for each \(\nu \)-open set \(V \) in \(X_0 \),

(b) contra \((\nu, \mu)\)-continuous if \(g^{-1}(U) \) is \(\nu \)-closed in \(X_0 \) for every \(\mu \)-open set \(U \) in \(Y_0 \).

(Al-Omari and Noiri, 2012), showed that if a function \(g \) from a \(\nu \)-space \((X_0, \nu) \) into a \(\mu \)-space \((Y_0, \mu) \) is an almost \((\nu, \mu)\)-open and contra \((\nu, \mu)\) continuous, then \(g \) is almost \((\nu, \mu)\) continuous.
Moreover, if \(g \) is a contra \((\nu, \mu)\) continuous and a \(\mu\) -space \(Y_\nu\) is \(\mu\) -extremely disconnected, then \(g \) is almost \((\nu, \mu)\) continuous Proposition 4.8, we conclude the following corollaries:

Corollary 4.4 Let \(g : (X_\nu, \nu) \to (Y_\nu, \mu) \) be an an almost \((\nu, \mu)\)-open and contra \((\nu, \mu)\)-continuous surjection from a \(\nu\)-space \((X_\nu, \nu)\) into a \(\mu\)-space \((Y_\nu, \mu)\), with a hereditary class \(H\) on \(X_\nu\). If \(X_\nu\) is \(w_\nu H\)-Lindelöf then \(Y_\nu\) so is.

Corollary 4.5 Let \(g : (X_\nu, \nu) \to (Y_\nu, \mu) \) be a contra \((\nu, \mu)\)-continuous and a \(\mu\)-space \(Y_\nu\) is \(\mu\)-extremely disconnected from a \(\nu\)-space \((X_\nu, \nu)\) into a \(\mu\)-space \((Y_\nu, \mu)\), with a hereditary class on \(X_\nu\). If \(X_\nu\) is \(w_\nu H\)-Lindelöf then \(Y_\nu\) so is.

Proposition 4.11 Let \(g : (X_\nu, \nu) \to (Y_\nu, \mu) \) be an almost \((\nu, \mu)\)-continuous surjection, if \((X_\nu, \nu)\) is \(w_\nu H\)-Lindelöf and \(\mu\)-space \(Y_\nu\) is countable, then \(Y_\nu\) is \(w_\nu\mu\)-Lindelöf.

Proof. Suppose \((X_\nu, \nu, H)\) be a \(w_\nu H\)-Lindelöf and \(g\) be an almost \((\nu, \mu)\) -continuous surjection, by Proposition 4.8 \(Y_\nu\) is \(\nu \mu g(H)\)-Lindelöf. Since \(Y_\nu\) is countable so a hereditary class \(H\) is countable, by applying Proposition 4.2 the proof is completed.

Proposition 4.12 Let \(g : (X_\nu, \nu) \to (Y_\nu, \mu) \) be an almost \((\nu, \mu)\)-continuous surjection, if \((X_\nu, \nu)\) is \(w_\nu H\)-Lindelöf and \(\mu\)-space \(Y_\nu\) is countable, then \((Y_\nu, \mu, g(H\nu))\) is \(\mu g(H\nu)\)-Lindelöf.

Proof. The proof follows immediately by Propositions 4.8, Proposition 4.2 and Proposition 4.4 (i).

Proposition 4.13 Let \(g : (X_\nu, \nu) \to (Y_\nu, \mu) \) be an almost \((\nu, \mu)\)-continuous surjection, if \((X_\nu, \nu)\) is \(w_\nu H\)-Lindelöf and \(\mu\)-space \(Y_\nu\) is countable, then \((Y_\nu, \mu, g(H))\) is \(\mu g(H)\)-Lindelöf with a \(\mu\)-codense hereditary class \(H\).

Proof. The proof follows immediately by Propositions 4.8, Propositions 4.2 and Propositions 4.4 (ii).

Proposition 4.14 Let \(g : (X_\nu, \nu) \to (Y_\nu, \mu) \) be an almost \((\nu, \mu)\)-continuous surjection, \(H\) be a hereditary class on \(X_\nu\) which is closed under countable union, if \((X_\nu, \nu, H)\) is \(w_\nu H\)-Lindelöf then \((Y_\nu, \mu, g(H))\) is \(\nu \mu g(H)\)-Lindelöf.

Proof. By Proposition 4.7, \((X_\nu, \nu, H)\) is \(w_\nu H\) -Lindelöf. Since \(g\) is almost \((\nu, \mu)\) -continuous surjection, then \((Y_\nu, \mu, g(H))\) is \(\nu g(H)\) -Lindelöf. But \(H\) is closed under countable union thus \(g(H)\) is closed under countable union on \(Y_\nu\). Again by applying Proposition 4.7 the proof is completed.

2. Conclusion

Our work aims to define and study the notion of weakly \(\nu\) -Lindelöf with respect to a hereditary class \(H\) : \(w_\nu H\) -Lindelöf, its properties and its relation to known concepts are showed.

Funding
The authors received no direct funding for this research.

Author details
Mariam Abuage
E-mail: slaam.salem@yahoo.com
A. Kiliçman
E-mail: akkilicman@yahoo.com
1 Institute for Mathematical Research, University Putra Malaysia, Serdang, Selangor, Malaysia.
2 Department of Mathematics, University Putra Malaysia, Serdang, Selangor, Malaysia.

Citation information
Cite this article as: Functions and \(w_\nu\)-Lindelöf with respect to a hereditary class, Mariam Abuage & A. Kiliçman, Cogent Mathematics & Statistics (2018), 5: 1479218.

References
Abuage & Kiliçman, Cogent Mathematics & Statistics (2018), 5: 1479218
https://doi.org/10.1080/25742558.2018.1479218

© 2018 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

No additional restrictions

You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Mathematics & Statistics (ISSN: 2574–2558) is published by Cogent OA, part of Taylor & Francis Group.

Publishing with Cogent OA ensures:

- Immediate, universal access to your article on publication
- High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online
- Download and citation statistics for your article
- Rapid online publication
- Input from, and dialog with, expert editors and editorial boards
- Retention of full copyright of your article
- Guaranteed legacy preservation of your article
- Discounts and waivers for authors in developing regions

Submit your manuscript to a Cogent OA journal at www.CogentOA.com