On \((\Lambda, \theta)\)-open sets in topological spaces

Chawalit Boonpok1* and Chokchai Viriyapong1

\textbf{ABSTRACT:} This article deals with the notions of \(s(\Lambda, \theta)\)-open, \(p(\Lambda, \theta)\)-open, \(\alpha(\Lambda, \theta)\)-open, \(\beta(\Lambda, \theta)\)-open, and \(b(\Lambda, \theta)\)-open sets. Several properties and the relationships between these concepts are discussed. Some characterizations of \(\Lambda_0\)-extremally disconnected spaces and \(\Lambda_0\)-hyperconnected spaces are investigated.

\textbf{Subjects:} Computer Mathematics; Mathematical Modeling; Applied Mechanics

Keywords: \((\Lambda, \theta)\)-closed set; \((\Lambda, \theta)\)-open set; \(\Lambda_0\)-submaximal space; \(\Lambda_0\)-extremally disconnected space

Subject Classification: 54A05; 54D05; 54G05

1. Introduction

In 1966, the notions of \(\theta\)-open sets, \(\theta\)-closed sets, and \(\theta\)-closure operators were introduced by Veličko \cite{Velic} for the purpose of studying the important class of \(H\)-closed spaces in terms of arbitrary filterbases. Dickman and Porter \cite{DickmanPorter}, Joseph \cite{Joseph}, and Long and Herrington \cite{LongHerr} continued the work of Veličko. Noiri and Jafari \cite{NoiriJafari} have also obtained several new and interesting results related to these sets. Dickman and Porter \cite{DickmanPorter} proved that a compact subspace of a Hausdorff space is \(\theta\)-closed. Moreover, they showed that a \(\theta\)-closed subspace of a Hausdorff space is closed. Janković \cite{Jankovic} proved that a space \((X, \tau)\) is Hausdorff if and only if every compact set is \(\theta\)-closed. The family of all \(\theta\)-open sets forms a topology on \(X\) and is denoted by \(\tau_\theta\). This topology is coarser than \(\tau\) and a space \((X, \tau)\) is regular if and only if \(\tau = \tau_\theta\). It is also obvious that a set \(A\) is \(\theta\)-closed in \((X, \tau)\) if and only if it is closed in \((X, \tau_\theta)\). In \cite{Lee} the concepts of the \((\Lambda, \theta)\)-closure and \((\Lambda, \theta)\)-open sets were introduced by using \(\theta\)-open sets and \(\theta\)-closure operations due to Veličko \cite{Velic}. Al-Hawary introduced and studied the notions of \(C\)-open sets \cite{AlHawary}, generalized preopen sets \cite{AlHawary}, \(\omega\)-open sets \cite{Silwan}, \(\varphi\)-closed sets \cite{AlHawary}, and generalized \(b\)-closed sets \cite{Silwan}. In 1970, Willard \cite{Willard} introduced the concept of extremally disconnected spaces. It is well-known that each extremally disconnected compact and Hausdorff space is called a Stonean space. Extremally disconnected spaces play an important role in the theory of Boolean algebras and in some branches of functional analysis. There is a duality between Stonean spaces and the category of complete Boolean algebras. The importance of extremally disconnected spaces becomes clearer in a study of absolute relationships between these concepts. Moreover, several characterizations of \(\Lambda_0\)-extremally disconnected spaces and \(\Lambda_0\)-hyperconnected spaces are investigated.
topological spaces. Sivaraj [21] investigated some characterizations of extremally disconnected spaces by utilizing semi-open sets due to Levine [14]. Recently, Noiri [18] has obtained some characterizations of extremally disconnected spaces by utilizing preopen sets and semi-preopen sets. The notion of hyperconnected spaces was introduced by Steen and Seebach Jr. [22]. Several notions that are equivalent to hyperconnectedness were defined and investigated in the literature. Levine [15] called a topological space \((X, \tau)\) a \(D\)-space if every non-empty open set of \(X\) is dense in \(X\) and showed that \((X, \tau)\) is a \(D\)-space if and only if it is hyperconnected. Pipitone and Russo [19] defined a topological space \((X, \tau)\) to be semi-connected if \(X\) is not the union of two disjoint non-empty semi-open sets of \(X\) and showed that \((X, \tau)\) is semi-connected if and only if it is \(D\)-space. In 1992, Ajmal and Kohli [1] investigated the further properties of hyperconnected spaces. Shama [20] showed that \(D\)-spaces are equivalent to hyperconnected spaces due to Steen and Seebach Jr. [22] and among others established the following result: The semi-continuous image of a hyperconnected set is connected [20]. This article is divided as follows: In Section 3, the concepts of the following properties hold:

\[\begin{align*}
\text{Definition 2.1.} & \text{ Let } A \text{ be a subset of a topological space } (X, \tau) \text{ (or simply } X) \text{ always mean topological spaces and no separation axioms are assumed unless explicitly stated. For a subset } A \text{ of a topological space } (X, \tau), \text{ Cl}(A) \text{ and } \text{Int}(A) \text{ denote the closure and interior of } A \text{ in } (X, \tau), \text{ respectively. A point } x \in X \text{ is called a } \theta\text{-cluster point of } A \text{ if } A \cap \text{Cl}(U) \neq \emptyset \text{ for every open set } U \text{ of } X \text{ containing } x. \text{ The set of all } \theta\text{-cluster points of } A \text{ is called } \theta\text{-closure of } A \text{ and is denoted by } \text{Cl}_\theta(A). \text{ A subset } A \text{ of a topological space } (X, \tau) \text{ is called } \theta\text{-open if } A = \text{Cl}_\theta(A) [23]. \text{ The complement of a } \theta\text{-closed set is said to be } \theta\text{-open. The union of all } \theta\text{-open sets contained in } A \text{ is called the } \theta\text{-interior of } A \text{ and is denoted by } \text{Int}_\theta(A). \text{ It is shown in [23] that } \text{Cl}_\theta(V) = \text{Cl}(V) \text{ for every open set } V \text{ of } X \text{ and } \text{Cl}_\theta(B) \text{ is closed in } (X, \tau) \text{ for every subset } B \text{ of } X. \text{ The family of all } \theta\text{-open sets in a topological space } (X, \tau) \text{ is denoted by } \theta(X, \tau). \end{align*}\]

Lemma 2.2. [8] *For subsets \(A, B, \text{ and } A_i (i \in I) \text{ of a topological space } (X, \tau), \text{ the following properties hold:}*

\[\begin{align*}
(1) \quad & A \subseteq \text{Cl}_\theta(A). \\
(2) \quad & \text{If } A \subseteq B, \text{ then } \text{Cl}_\theta(A) \subseteq \text{Cl}_\theta(B). \\
(3) \quad & \text{Cl}_\theta(\text{Cl}_\theta(A)) = \text{Cl}_\theta(A). \\
(4) \quad & \text{Cl}_\theta(\bigcap\{A_i \mid i \in I\}) \subseteq \bigcap\{\text{Cl}_\theta(A_i) \mid i \in I\}. \\
(5) \quad & \text{Cl}_\theta(\bigcup\{A_i \mid i \in I\}) = \bigcup\{\text{Cl}_\theta(A_i) \mid i \in I\}. \\
\end{align*}\]

Definition 2.3. [8] *A subset \(A \subseteq \theta\text{-open set of a topological space } (X, \tau) \text{ is called a } \Lambda\theta\text{-set if } A = \text{Cl}_\theta(A). \)

Lemma 2.4. [8] *For subsets \(A \text{ and } A_i (i \in I) \text{ of a topological space } (X, \tau), \text{ the following properties hold:}*

\[\begin{align*}
(1) \quad & \text{Cl}_\theta(A) \text{ is a } \Lambda\theta\text{-set.} \\
(2) \quad & \text{If } A \text{ is a } \theta\text{-open, then } A \text{ is a } \Lambda\theta\text{-set.} \\
(3) \quad & \text{If } A_i \text{ is a } \Lambda\theta\text{-set for each } i \in I, \text{ then } \bigcap_{i \in I} A_i \text{ is a } \Lambda\theta\text{-set.} \\
(4) \quad & \text{If } A_i \text{ is a } \Lambda\theta\text{-set for each } i \in I, \text{ then } \bigcup_{i \in I} A_i \text{ is a } \Lambda\theta\text{-set.} \\
\end{align*}\]

Definition 2.5. Let \(A \subseteq \theta\text{-open set of a topological space } (X, \tau). \)

\[\begin{align*}
(1) \quad & \text{A is called a } (\Lambda, \theta)\text{-closed set [8] if } A = T \cap C, \text{ where } T \text{ is a } \Lambda\theta\text{-set and } C \text{ is a } \theta\text{-closed set. The complement of a } (\Lambda, \theta)\text{-closed set is called } (\Lambda, \theta)\text{-open. The collection of all } (\Lambda, \theta)\text{-open (resp. } (\Lambda, \theta)\text{-closed) sets in a topological space } (X, \tau) \text{ is denoted by } \Lambda\theta\text{Cl}(X, \tau) \text{ (resp. } \Lambda\theta\text{Int}(X, \tau)). \\
\end{align*}\]
(2) A point \(x \in X \) is called a \((\Lambda, \theta)\)-cluster point of \(A \) \cite{8} if for every \((\Lambda, \theta)\)-open set \(U \) of \(X \) containing \(x \), we have \(A \cap U \neq \emptyset \). The set of all \((\Lambda, \theta)\)-cluster points of \(A \) is called the \((\Lambda, \theta)\)-closure of \(A \) and is denoted by \(A^{(\Lambda, \theta)} \).

Lemma 2.6. \cite{8} Let \(A \) and \(B \) be subsets of a topological space \((X, \tau)\). For the \((\Lambda, \theta)\)-closure, the following properties hold:

1. \(A \subseteq A^{(\Lambda, \theta)} \).
2. \(A^{(\Lambda, \theta)} = \bigcap \{F | A \subseteq F \text{ and } F \text{ is } (\Lambda, \theta)\text{-closed} \} \).
3. If \(A \subseteq B \), then \(A^{(\Lambda, \theta)} \subseteq B^{(\Lambda, \theta)} \).
4. \(A^{(\Lambda, \theta)} \) is \((\Lambda, \theta)\)-closed.

Lemma 2.7. \cite{7} Let \(A \) be a subset of a topological space \((X, \tau)\). Then the following properties hold:

1. If \(A \) is \((\Lambda, \theta)\)-closed, then \(A = A_\theta(A) \cap Cl_\tau(A) \).
2. If \(A \) is \(\theta \)-closed, then \(A \) is \((\Lambda, \theta)\)-closed.
3. If \(A_i \) is \((\Lambda, \theta)\)-closed for each \(i \in I \), then \(\bigcap_{i \in I} A_i \) is \((\Lambda, \theta)\)-closed.

Definition 2.8. \cite{7} Let \((X, \tau)\) be a topological space, \(A \subseteq X \) and \(x \in X \). Then:

1. The \(\Lambda_\theta \)-kernel of \(A \), denoted by \(\Lambda_\theta Ker(A) \), is defined to be the set \(\Lambda_\theta Ker(A) = \cap \{ G \in \Lambda_\theta O(X, \tau) | A \subseteq G \} \);
2. \(\langle x \rangle = \{x \}^{(\Lambda, \theta)} \cap \Lambda_\theta Ker(\{x\}) \).

Lemma 2.9. \cite{7} Let \(A \) and \(B \) be subsets of a topological space \((X, \tau)\). Then the following properties hold:

1. \(A \subseteq B \) implies \(\Lambda_\theta Ker(A) \subseteq \Lambda_\theta Ker(B) \).
2. \(\Lambda_\theta Ker(\Lambda_\theta Ker(A)) = \Lambda_\theta Ker(A) \).

Lemma 2.10. \cite{7} Let \((X, \tau)\) be a topological space and \(x, y \in X \). Then, \(y \in \Lambda_\theta Ker(\{x\}) \) if and only if \(x \in \Lambda_\theta Ker(\{y\}) \).

Lemma 2.11. For a subset \(A \) of a topological space \((X, \tau)\), \(x \in A^{(\Lambda, \theta)} \) if and only if \(U \cap A \neq \emptyset \) for every \((\Lambda, \theta)\)-open set \(U \) containing \(x \).

Proof. Let \(x \in A^{(\Lambda, \theta)} \). Suppose that \(U \cap A = \emptyset \) for some \((\Lambda, \theta)\)-open set \(U \) containing \(x \). Then \(A \subseteq X - U \) and \(X - U \) is \((\Lambda, \theta)\)-closed. Since \(x \in A^{(\Lambda, \theta)} \), we have \(x \in X - U^{(\Lambda, \theta)} = X - U \); hence \(x \notin U \), which is a contradiction that \(x \notin U \). Conversely, we obtain \(U \cap A \neq \emptyset \) for every \((\Lambda, \theta)\)-open set \(U \) containing \(x \).

Conversely, assume that \(U \cap A \neq \emptyset \) for every \((\Lambda, \theta)\)-open set \(U \) containing \(x \). We shall show that \(x \in A^{(\Lambda, \theta)} \). Suppose that \(x \notin A^{(\Lambda, \theta)} \). Then, there exists a \((\Lambda, \theta)\)-closed set \(F \) such that \(A \subseteq F \) and \(x \notin F \). Therefore, we obtain \(X - F \) is a \((\Lambda, \theta)\)-open set containing \(x \) such that \((X - F) \cap A = \emptyset \). This a contradiction to \(U \cap A \neq \emptyset \); hence \(x \in A^{(\Lambda, \theta)} \).

A subset \(B \) of a topological space \((X, \tau)\) is called a \((\Lambda, \theta)\)-neighborhood of a point \(x \in X \) \cite{7} if there exists a \((\Lambda, \theta)\)-open set \(U \) such that \(x \in U \subseteq B \).

Lemma 2.12. \cite{7} A subset \(A \) of a topological space \((X, \tau)\) is \((\Lambda, \theta)\)-open in \(X \) if and only if it is a \((\Lambda, \theta)\)-neighborhood of each point of \(A \).

Definition 2.13. Let \(A \) be a subset of a topological space \((X, \tau)\). The union of all \((\Lambda, \theta)\)-open sets contained in \(A \) is called the \((\Lambda, \theta)\)-interior of \(A \) and is denoted by \(A^{(\Lambda, \theta)} \).
Lemma 2.14. Let A and B be subsets of a topological space (X, τ). For the (Λ, θ)-interior, the following properties hold:

1. $A_{(\Lambda, \theta)} \subseteq A$.
2. If $A \subseteq B$, then $A_{(\Lambda, \theta)} \subseteq B_{(\Lambda, \theta)}$.
3. A is (Λ, θ)-open if and only if $A_{(\Lambda, \theta)} = A$.
4. $A_{(\Lambda, \theta)}$ is (Λ, θ)-open.

3. Generalized (Λ, θ)-open sets

We begin this section by introducing the notions of $s(\Lambda, \theta)$-open, $p(\Lambda, \theta)$-open, $a(\Lambda, \theta)$-open and $\beta(\Lambda, \theta)$-open sets.

Definition 3.1. A subset A of a topological space (X, τ) is said to be:

1. $s(\Lambda, \theta)$-open if $A \subseteq [A_{(\Lambda, \theta)}]^{(\Lambda, \theta)}$;
2. $p(\Lambda, \theta)$-open if $A \subseteq [A_{(\Lambda, \theta)}]^{(\Lambda, \theta)}$;
3. $a(\Lambda, \theta)$-open if $A \subseteq [A_{(\Lambda, \theta)}]^{\Lambda_{(\Lambda, \theta)}}$;
4. $\beta(\Lambda, \theta)$-open if $A \subseteq [A_{(\Lambda, \theta)}]^{\theta_{(\Lambda, \theta)}}$.

The family of all $s(\Lambda, \theta)$-open (resp. $p(\Lambda, \theta)$-open, $a(\Lambda, \theta)$-open, $\beta(\Lambda, \theta)$-open) sets in a topological space (X, τ) is denoted by $s_{\Lambda, \theta}O(X, \tau)$ (resp. $p_{\Lambda, \theta}O(X, \tau)$, $a_{\Lambda, \theta}O(X, \tau)$, $\beta_{\Lambda, \theta}O(X, \tau)$).

Definition 3.2. The complement of a $s(\Lambda, \theta)$-open (resp. $p(\Lambda, \theta)$-open, $a(\Lambda, \theta)$-open, $\beta(\Lambda, \theta)$-open) set is said to be $s(\Lambda, \theta)$-closed (resp. $p(\Lambda, \theta)$-closed, $a(\Lambda, \theta)$-closed, $\beta(\Lambda, \theta)$-closed).

The family of all $s(\Lambda, \theta)$-closed (resp. $p(\Lambda, \theta)$-closed, $a(\Lambda, \theta)$-closed, $\beta(\Lambda, \theta)$-closed) sets in a topological space (X, τ) is denoted by $s_{\Lambda, \theta}C(X, \tau)$ (resp. $p_{\Lambda, \theta}C(X, \tau)$, $a_{\Lambda, \theta}C(X, \tau)$, $\beta_{\Lambda, \theta}C(X, \tau)$).

Proposition 3.3. For a topological space (X, τ), the following properties hold:

1. $\Lambda_{\Lambda, \theta}O(X, \tau) \subseteq a_{\Lambda, \theta}O(X, \tau) \subseteq s_{\Lambda, \theta}O(X, \tau) \subseteq p_{\Lambda, \theta}O(X, \tau)$.
2. $a_{\Lambda, \theta}O(X, \tau) \subseteq p_{\Lambda, \theta}O(X, \tau)$.
3. $a_{\Lambda, \theta}O(X, \tau) = s_{\Lambda, \theta}O(X, \tau) \cap p_{\Lambda, \theta}O(X, \tau)$.

Proof:

1. Since $V = V_{(\Lambda, \theta)} \subseteq [V_{(\Lambda, \theta)}]^{(\Lambda, \theta)} \subseteq [V_{(\Lambda, \theta)}]^{\Lambda_{(\Lambda, \theta)}} \subseteq [V_{(\Lambda, \theta)}]^{\theta_{(\Lambda, \theta)}}$, we obtain $\Lambda_{\Lambda, \theta}O(X, \tau) \subseteq a_{\Lambda, \theta}O(X, \tau) \subseteq s_{\Lambda, \theta}O(X, \tau) \subseteq p_{\Lambda, \theta}O(X, \tau)$.

2. Since $V \subseteq [V_{(\Lambda, \theta)}]^{\Lambda_{(\Lambda, \theta)}} \subseteq [V_{(\Lambda, \theta)}]^{\theta_{(\Lambda, \theta)}}$, we have $a_{\Lambda, \theta}O(X, \tau) \subseteq p_{\Lambda, \theta}O(X, \tau)$.

3. By (1) and (2), we obtain $a_{\Lambda, \theta}O(X, \tau) \subseteq s_{\Lambda, \theta}O(X, \tau) \cap p_{\Lambda, \theta}O(X, \tau)$. On the other hand, let $V \in s_{\Lambda, \theta}O(X, \tau) \cap p_{\Lambda, \theta}O(X, \tau)$. Then, we have $V \in s_{\Lambda, \theta}O(X, \tau)$ and $V \in p_{\Lambda, \theta}O(X, \tau)$. Therefore, $V \subseteq [V_{(\Lambda, \theta)}]^{(\Lambda, \theta)}$ and $V \subseteq [V_{(\Lambda, \theta)}]^{\theta_{(\Lambda, \theta)}}$. This implies that $V \subseteq [V_{(\Lambda, \theta)}]^{\Lambda_{(\Lambda, \theta)}}$ and so $V \in a_{\Lambda, \theta}O(X, \tau)$. Hence,

$$s_{\Lambda, \theta}O(X, \tau) \cap p_{\Lambda, \theta}O(X, \tau) \subseteq a_{\Lambda, \theta}O(X, \tau).$$

Consequently, we obtain $a_{\Lambda, \theta}O(X, \tau) = s_{\Lambda, \theta}O(X, \tau) \cap p_{\Lambda, \theta}O(X, \tau)$.

Definition 3.4. A subset A of a topological space (X, τ) is said to be $r(\Lambda, \theta)$-open (resp. $r(\Lambda, \theta)$-closed) if $A = [A_{(\Lambda, \theta)}]^{\Lambda_{(\Lambda, \theta)}}$ (resp. $A = [A_{(\Lambda, \theta)}]^{\theta_{(\Lambda, \theta)}}$).

The family of all $r(\Lambda, \theta)$-open (resp. $r(\Lambda, \theta)$-closed) sets in a topological space (X, τ) is denoted by $r_{\Lambda, \theta}O(X, \tau)$ (resp. $r_{\Lambda, \theta}C(X, \tau)$).
Proposition 3.5. For a subset A of a topological space (X, τ), the following properties hold:

1. A is $r(\Lambda, \theta)$-open if and only if $A = F_{(\Lambda, \theta)}$ for some (Λ, θ)-closed set F.
2. A is $r(\Lambda, \theta)$-closed if and only if $A = U_{(\Lambda, \theta)}$ for some (Λ, θ)-open set U.

Lemma 3.6. For a subset A of a topological space (X, τ), the following properties hold:

1. $|X - A|_{(\Lambda, \theta)} = X - A_{(\Lambda, \theta)}$.
2. $|X - A|_{(\Lambda, \theta)} = X - A_{(\Lambda, \theta)}$.

Proof. (1) Let $x \in X - A_{(\Lambda, \theta)}$. Then $x \in X - A$ and $x \notin A_{(\Lambda, \theta)}$. Consequently, we obtain $X - A_{(\Lambda, \theta)} = X - A_{(\Lambda, \theta)}$.

(2) This follows from (1).

Proposition 3.7. For a subset A of a topological space (X, τ), the following properties hold:

1. A is $s(\Lambda, \theta)$-closed if and only if $[A_{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq A$.
2. A is $p(\Lambda, \theta)$-closed if and only if $[A_{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq A$.
3. A is $a(\Lambda, \theta)$-closed if and only if $[A_{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq A$.
4. A is $\beta(\Lambda, \theta)$-closed if and only if $[A_{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq A$.

Proof. (1) Suppose that A is a $s(\Lambda, \theta)$-closed set. Then, we have $X - A$ is $s(\Lambda, \theta)$-open and so $X - A \subseteq |X - A|_{(\Lambda, \theta)}$. By Lemma 3.6,

$X - A \subseteq |X - A|_{(\Lambda, \theta)}, \Lambda, \theta = |X - A|_{(\Lambda, \theta)} = X - A_{(\Lambda, \theta)}$.

Consequently, we obtain $[A_{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq A$.

Conversely, suppose that $[A_{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq A$. Then, we have

$X - A \subseteq X - A_{(\Lambda, \theta)}$

and by Lemma 3.6, we obtain

$X - A \subseteq X - A_{(\Lambda, \theta)} = |X - A|_{(\Lambda, \theta)} = X - A_{(\Lambda, \theta)}$.

This implies that $X - A$ is $s(\Lambda, \theta)$-open and so A is $s(\Lambda, \theta)$-closed.

The proofs of (2), (3) and (4) are similar to the proof of (1).

Proposition 3.8. For a subset A of a topological space (X, τ), the following properties hold:

1. $[[[A_{(\Lambda, \theta)}]_{(\Lambda, \theta)}]_{(\Lambda, \theta)}]_{(\Lambda, \theta)} = [A_{(\Lambda, \theta)}]_{(\Lambda, \theta)}$.
2. $[[A_{(\Lambda, \theta)}]_{(\Lambda, \theta)}]_{(\Lambda, \theta)} = [A_{(\Lambda, \theta)}]_{(\Lambda, \theta)}$.

Proof. (1) Since $[A_{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq [A_{(\Lambda, \theta)}]_{(\Lambda, \theta)}$, we have

$[A_{(\Lambda, \theta)}]_{(\Lambda, \theta)} = [A_{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq [[[A_{(\Lambda, \theta)}]_{(\Lambda, \theta)}]_{(\Lambda, \theta)}]_{(\Lambda, \theta)}$.

On the other hand, since $[[[A_{(\Lambda, \theta)}]_{(\Lambda, \theta)}]_{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq A_{(\Lambda, \theta)}$,

$[[[A_{(\Lambda, \theta)}]_{(\Lambda, \theta)}]_{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq [A_{(\Lambda, \theta)}]_{(\Lambda, \theta)}$.
Consequently, we obtain \(\|A^{(\Lambda, \theta)}\|_{(\Lambda, \theta)} = \|A^{(\Lambda, \theta)}\|_{(\Lambda, \theta)} \).

(2) The proof is similar to that of (1).

Proposition 3.9. For a subset \(A \) of a topological space \((X, \tau)\), the following properties are equivalent:

(1) \(A \) is \(r(\Lambda, \theta) \)-open.
(2) \(A \) is \((\Lambda, \theta)\)-open and \(s(\Lambda, \theta)\)-closed.
(3) \(A \) is \(a(\Lambda, \theta)\)-open and \(s(\Lambda, \theta)\)-closed.
(4) \(A \) is \(p(\Lambda, \theta)\)-open and \(s(\Lambda, \theta)\)-closed.
(5) \(A \) is \((\Lambda, \theta)\)-open and \(\beta(\Lambda, \theta)\)-closed.
(6) \(A \) is \(a(\Lambda, \theta)\)-open and \(\beta(\Lambda, \theta)\)-closed.

Proof. (1) \(\Rightarrow \) (2): Suppose that \(A \) is a \(r(\Lambda, \theta)\)-open set. Then, we have \(A = [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \) and so \([A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq A \). Therefore, we obtain

\[
A^{(\Lambda, \theta)} = \left[[A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \right]_{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} = A.
\]

Consequently, \(A \) is \((\Lambda, \theta)\)-open and \(s(\Lambda, \theta)\)-closed.

(2) \(\Rightarrow \) (3): Follows from Proposition 3.3(1).

(3) \(\Rightarrow \) (4): Follows from Proposition 3.3(2).

(4) \(\Rightarrow \) (5): Suppose that \(A \) is \(p(\Lambda, \theta)\)-open and \(s(\Lambda, \theta)\)-closed. Then, we have \(A \subseteq [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \) and \([A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq A \). This implies that \(A = [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \). Therefore, \(A \) is \(r(\Lambda, \theta)\)-open and hence, \(A \) is \((\Lambda, \theta)\)-open. Since every \(s(\Lambda, \theta)\)-closed set is \(\beta(\Lambda, \theta)\)-closed. Consequently, we obtain \(A \) is \((\Lambda, \theta)\)-open and \(\beta(\Lambda, \theta)\)-closed.

(5) \(\Rightarrow \) (6): Follows from Proposition 3.3(1).

(6) \(\Rightarrow \) (1): Suppose that \(A \) is \(a(\Lambda, \theta)\)-open and \(\beta(\Lambda, \theta)\)-closed. Then, we have

\[
A \subseteq [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)}
\]

and \([A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq A \). This implies that \(A = [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \). Therefore, we obtain \(A^{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \). Hence, \(A^{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \) and hence, \(A^{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} = A \). Consequently, \(A \) is \(r(\Lambda, \theta)\)-open.

Corollary 3.10. For a subset \(A \) of a topological space \((X, \tau)\), the following properties are equivalent:

(1) \(A \) is \(r(\Lambda, \theta)\)-closed.
(2) \(A \) is \((\Lambda, \theta)\)-closed and \(s(\Lambda, \theta)\)-open.
(3) \(A \) is \(a(\Lambda, \theta)\)-closed and \(s(\Lambda, \theta)\)-open.
(4) \(A \) is \(p(\Lambda, \theta)\)-closed and \(s(\Lambda, \theta)\)-open.
(5) \(A \) is \((\Lambda, \theta)\)-closed and \(\beta(\Lambda, \theta)\)-open.
(6) \(A \) is \(a(\Lambda, \theta)\)-closed and \(\beta(\Lambda, \theta)\)-open.

Definition 3.11. A subset \(A \) of a topological space \((X, \tau)\) is called \((\Lambda, \theta)\)-clopen if \(A \) is both \((\Lambda, \theta)\)-open and \((\Lambda, \theta)\)-closed.

Proposition 3.12. For a subset \(A \) of a topological space \((X, \tau)\), the following properties are equivalent:

(1) \(A \) is \((\Lambda, \theta)\)-clopen.
(2) \(A \) is \(r(\Lambda, \theta)\)-open and \(r(\Lambda, \theta)\)-closed.
(3) \(A \) is \((\Lambda, \theta)\)-open and \(a(\Lambda, \theta)\)-closed.
(4) \(A \) is \((\Lambda, \theta)\)-open and \(p(\Lambda, \theta)\)-closed.
(5) \(A \) is \(a(\Lambda, \theta)\)-open and \(p(\Lambda, \theta)\)-closed.
(6) \(A \) is \(a(\Lambda, \theta)\)-open and \((\Lambda, \theta)\)-closed.
(7) A is \(p(\Lambda, \theta) \)-open and \((\Lambda, \theta) \)-closed.

(8) A is \(p(\Lambda, \theta) \)-open and \(a(\Lambda, \theta) \)-closed.

Proof. (1) \(\Rightarrow \) (2): Suppose that A is \((\Lambda, \theta) \)-closed set. Then, we have \(A = A_{(\Lambda, \theta)} = A^{(\Lambda, \theta)} \) and so
\(A = [A_{(\Lambda, \theta)}]^{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \). This shows that A is \(r(\Lambda, \theta) \)-open and \(r(\Lambda, \theta) \)-closed.

(2) \(\Rightarrow \) (3): Suppose that A is \(r(\Lambda, \theta) \)-open and \(r(\Lambda, \theta) \)-closed. Then, we have
\(A = [A_{(\Lambda, \theta)}]^{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \).

Therefore,
\[A_{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} = A \]
and
\[[A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} = A. \]

Consequently, we obtain A is \((\Lambda, \theta) \)-open and \(a(\Lambda, \theta) \)-closed.

(3) \(\Rightarrow \) (4): Suppose that A is \((\Lambda, \theta) \)-open and \(a(\Lambda, \theta) \)-closed. Then, we have \(A = A_{(\Lambda, \theta)} \) and
\[[A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq A. \] By Proposition 3.8(2),
\[[A_{(\Lambda, \theta)}]^{(\Lambda, \theta)} = [[A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}]_{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)} \subseteq A. \]

Hence, A is \(p(\Lambda, \theta) \)-closed. Therefore, we obtain A is \((\Lambda, \theta) \)-open and \(p(\Lambda, \theta) \)-closed.

(4) \(\Rightarrow \) (5): Suppose that A is \((\Lambda, \theta) \)-open and \(p(\Lambda, \theta) \)-closed. Then, we have \(A = A^{(\Lambda, \theta)} \) and
\[[A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq A. \] Therefore,
\[A = A^{(\Lambda, \theta)} \subseteq [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq A_{(\Lambda, \theta)}. \]

This implies that
\[[A^{(\Lambda, \theta)}]^{(\Lambda, \theta)} = A_{(\Lambda, \theta)} = A \text{ and so } A = a(\Lambda, \theta) \)-open. Consequently, we obtain A is \(a(\Lambda, \theta) \)-open and \(p(\Lambda, \theta) \)-closed.

(5) \(\Rightarrow \) (6): Suppose that A is \(a(\Lambda, \theta) \)-open and \(p(\Lambda, \theta) \)-closed. Then, we have
\[A \subseteq [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \]
and
\[[A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq A. \] This implies that
\[A = [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)} \text{ and hence, } A^{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)} \text{ and } [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq A. \]

By Proposition 3.8(2), we have \(A^{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)} \). Since
\[[A^{(\Lambda, \theta)}]^{(\Lambda, \theta)} \subseteq A, \]
\[A^{(\Lambda, \theta)} \subseteq A \text{ and so } A^{(\Lambda, \theta)} = A. \]

Therefore, we obtain A is \((\Lambda, \theta) \)-closed and \(a(\Lambda, \theta) \)-open.

(6) \(\Rightarrow \) (7): Suppose that A is \(a(\Lambda, \theta) \)-open and \((\Lambda, \theta) \)-closed. Then, we have
\[A \subseteq [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \]
and
\[A^{(\Lambda, \theta)} = A. \] By Proposition 3.8(1),
\[A \subseteq [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \]
\[= [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \]
\[= [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)}. \]

This shows that A is \(p(\Lambda, \theta) \)-open. Hence, A is \(p(\Lambda, \theta) \)-open and \((\Lambda, \theta) \)-closed.

(7) \(\Rightarrow \) (8): Suppose that A is \(p(\Lambda, \theta) \)-open and \((\Lambda, \theta) \)-closed. Then, we have
\[A \subseteq [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \]
and
\[A^{(\Lambda, \theta)} = A. \] Thus,
\[[A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq A^{(\Lambda, \theta)} = A. \]

This shows that A is \(p(\Lambda, \theta) \)-open and \(a(\Lambda, \theta) \)-closed.

(8) \(\Rightarrow \) (1): Suppose that A is \(p(\Lambda, \theta) \)-open and \(a(\Lambda, \theta) \)-closed. Then, we have
\[A \subseteq [A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \]
and
\[A^{(\Lambda, \theta)} \subseteq [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)} \subseteq A. \] Therefore, we have
\[A^{(\Lambda, \theta)} \subseteq [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)} \subseteq A \]
and hence, \(A^{(\Lambda, \theta)} \subseteq A \). Consequently, \(A = A^{(\Lambda, \theta)} \) and so A is \((\Lambda, \theta) \)-closed. Since
\[[A^{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq A, \]
\[[A^{(\Lambda, \theta)}]^{(\Lambda, \theta)} \subseteq A \text{ and so } A \subseteq A^{(\Lambda, \theta)}. \] This implies that
\[A = A_{(\Lambda, \theta)}. \] Therefore, A is \((\Lambda, \theta) \)-open. Consequently, we obtain A is \((\Lambda, \theta) \)-clopen.
Definition 3.13. A subset A of a topological space (X, τ) is called $\alpha(\Lambda, \theta)$-\star-open (resp. $\beta(\Lambda, \theta)$-\star-open) if $A = [A(\Lambda, \theta)]^{(\alpha, \theta)}_{(\alpha, \theta)}$ (resp. $A = [A(\Lambda, \theta)]^{(\beta, \theta)}_{(\beta, \theta)}$).

Proposition 3.14. A subset A of a topological space (X, τ) is $r(\Lambda, \theta)$-open if and only if A is $\alpha(\Lambda, \theta)$-\star-open.

Proof. Suppose that A is a $r(\Lambda, \theta)$-open set. Then, we have $A = [A(\Lambda, \theta)]^{(\alpha, \theta)}_{(\alpha, \theta)}$. This implies that A is (Λ, θ)-open and so $A = [A(\Lambda, \theta)]^{(\alpha, \theta)}_{(\alpha, \theta)}$. Consequently, we obtain A is $\alpha(\Lambda, \theta)$-\star-open.

Conversely, suppose that A is a $\alpha(\Lambda, \theta)$-\star-open set. Then $A = [A(\Lambda, \theta)]^{(\alpha, \theta)}_{(\alpha, \theta)}$. By Proposition 3.8(1),

$$[A(\Lambda, \theta)]^{(\alpha, \theta)}_{(\alpha, \theta)} = [[A(\Lambda, \theta)]^{(\alpha, \theta)}_{(\alpha, \theta)}]^{(\alpha, \theta)}_{(\alpha, \theta)} = [A(\Lambda, \theta)]^{(\alpha, \theta)}_{(\alpha, \theta)} = A.$$

Consequently, we obtain A is $r(\Lambda, \theta)$-open.

Proposition 3.15. A subset A of a topological space (X, τ) is $r(\Lambda, \theta)$-closed if and only if A is $\beta(\Lambda, \theta)$-\star-open.

Proof. Suppose that A is a $r(\Lambda, \theta)$-closed set. Then, we have $A = [A(\Lambda, \theta)]^{(\beta, \theta)}_{(\beta, \theta)}$ and so A is (Λ, θ)-closed. Therefore, we obtain $A = [A(\Lambda, \theta)]^{(\beta, \theta)}_{(\beta, \theta)} = [A(\Lambda, \theta)]^{(\beta, \theta)}_{(\beta, \theta)}$. This shows that A is $\beta(\Lambda, \theta)$-\star-open.

Conversely, suppose that A is a $\beta(\Lambda, \theta)$-\star-open set. Then, we have

$$A = [A(\Lambda, \theta)]^{(\beta, \theta)}_{(\beta, \theta)}.$$

and by Proposition 3.8(1),

$$[A(\Lambda, \theta)]^{(\beta, \theta)}_{(\beta, \theta)} = [[A(\Lambda, \theta)]^{(\beta, \theta)}_{(\beta, \theta)}]^{(\beta, \theta)}_{(\beta, \theta)} = [A(\Lambda, \theta)]^{(\beta, \theta)}_{(\beta, \theta)} = A.$$

Therefore, we obtain A is $r(\Lambda, \theta)$-closed.

Proposition 3.16. For a subset A of a topological space (X, τ), the following properties are equivalent:

1. A is $\beta(\Lambda, \theta)$-\star-open.
2. A is $\beta(\Lambda, \theta)$-open and (Λ, θ)-closed.
3. A is $\beta(\Lambda, \theta)$-open and $\alpha(\Lambda, \theta)$-closed.

Proposition 3.17. For a subset A of a topological space (X, τ), the following properties are equivalent:

1. A is $\alpha(\Lambda, \theta)$-\star-open.
2. A is (Λ, θ)-open and $\beta(\Lambda, \theta)$-closed.
3. A is $\alpha(\Lambda, \theta)$-open and $\beta(\Lambda, \theta)$-closed.

Definition 3.18. A subset A of a topological space (X, τ) is said to be $b(\Lambda, \theta)$-open if $A \subseteq [A(\Lambda, \theta)]^{(\alpha, \theta)}_{(\alpha, \theta)}$. The complement of a $b(\Lambda, \theta)$-open set is said to be $b(\Lambda, \theta)$-closed.

The family of all $b(\Lambda, \theta)$-open (resp. $b(\Lambda, \theta)$-closed) sets in a topological space (X, τ) is denoted by $b_{\Lambda}O(X, \tau)$ (resp. $b_{\Lambda}C(X, \tau)$).

Remark 3.19. It is easy to see that for a topological space (X, τ),

$$s_{\Lambda}O(X, \tau) \cup p_{\Lambda}O(X, \tau) \subseteq b_{\Lambda}O(X, \tau) \subseteq b_{\Lambda}O(X, \tau).$$

Proposition 3.20. For a topological space (X, τ), if $A = B \cup C$, where B is $s(\Lambda, \theta)$-open and C is $p(\Lambda, \theta)$-open, then A is $b(\Lambda, \theta)$-open.

Lemma 3.21. A subset A of a topological space (X, τ) is $b(\Lambda, \theta)$-closed if and only if $[A(\Lambda, \theta)]^{(\alpha, \theta)}_{(\alpha, \theta)} \cap [A(\Lambda, \theta)]^{(\beta, \theta)}_{(\beta, \theta)} \subseteq A$.

Page 8 of 24
Proof. Suppose that A is a $b(\Lambda, \theta)$-closed set. Then $X - A$ is $b(\Lambda, \theta)$-open and so

\[
X - A \subseteq \{X - A\}^{(\Lambda, \theta)}_{(\Lambda, \theta)} \cup \{X - A\}^{(\Lambda, \theta)}_{(\Lambda, \theta)} = \{X - A\}^{(\Lambda, \theta)}_{(\Lambda, \theta)} \cup \{X - A\}^{(\Lambda, \theta)}_{(\Lambda, \theta)}.
\]

Therefore, we obtain $[A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \cap [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \subseteq A$. Conversely, suppose that $[A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \cap [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \subseteq A$. Then, we have

\[
X - A \subseteq \{X - A\}^{(\Lambda, \theta)}_{(\Lambda, \theta)} \cup \{X - A\}^{(\Lambda, \theta)}_{(\Lambda, \theta)} = \{X - A\}^{(\Lambda, \theta)}_{(\Lambda, \theta)} \cup \{X - A\}^{(\Lambda, \theta)}_{(\Lambda, \theta)}.
\]

This shows that $X - A$ is $b(\Lambda, \theta)$-open and so A is $b(\Lambda, \theta)$-closed.

Corollary 3.22. For a subset A of a topological space (X, τ), the following properties are equivalent:

1. A is $r(\Lambda, \theta)$-open.
2. A is (Λ, θ)-open and $b(\Lambda, \theta)$-closed.
3. A is $a(\Lambda, \theta)$-open and $b(\Lambda, \theta)$-closed.

Proof. (1) \Rightarrow (2): Suppose that A is a $r(\Lambda, \theta)$-open set. Then, we have $A = [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)}$. Therefore, $[A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \cap [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \cap A \subseteq A$ and by Lemma 3.21, A is $b(\Lambda, \theta)$-closed. Consequently, we obtain A is (Λ, θ)-open and $b(\Lambda, \theta)$-closed.

(2) \Rightarrow (3): This is obvious since every (Λ, θ)-open set is $a(\Lambda, \theta)$-open.

(3) \Rightarrow (1): Suppose that A is $a(\Lambda, \theta)$-open and $b(\Lambda, \theta)$-closed. Then, we have $[A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \cap [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \subseteq A$ and $A \subseteq [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)}$. Therefore, we obtain $[A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \subseteq [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)}$ and hence,

\[
[A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \cap [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \cap [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \cap [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)}
\]

This implies that $A = [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \cap [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}$. By Proposition 3.8(2), we have $A^{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)}$. Hence, $A = [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \subseteq A^{(\Lambda, \theta)}$. Consequently, A is $r(\Lambda, \theta)$-open.

Lemma 3.23. Let A be a subset of a topological space (X, τ). If A is both $s(\Lambda, \theta)$-closed and $\beta(\Lambda, \theta)$-open, then A is $s(\Lambda, \theta)$-open.

Proof. Suppose that A is both $s(\Lambda, \theta)$-closed and $\beta(\Lambda, \theta)$-open. Since A is $s(\Lambda, \theta)$-closed, it follows from Proposition 3.7(1) that $[A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \subseteq A$. Since A is $\beta(\Lambda, \theta)$-open, $[A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \subseteq A \subseteq [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)}$ and so $[A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \subseteq A$. Therefore, we obtain $[A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \subseteq A$. This shows that A is $s(\Lambda, \theta)$-open.

Proposition 3.24. Let A be a subset of a topological space (X, τ). If A is $b(\Lambda, \theta)$-open, then $A^{(\Lambda, \theta)}$ is $r(\Lambda, \theta)$-closed.

Proof. Suppose that A is a $b(\Lambda, \theta)$-open set. Since A is $b(\Lambda, \theta)$-open, we have

\[
A \subseteq [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \cup [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \subseteq [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)}
\]

Therefore, we obtain $A^{(\Lambda, \theta)} \subseteq [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)} \subseteq A^{(\Lambda, \theta)}$ and so

\[
A^{(\Lambda, \theta)} = [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}_{(\Lambda, \theta)}
\]

Hence, $A^{(\Lambda, \theta)}$ is $r(\Lambda, \theta)$-closed.
Corollary 3.25. For a subset A of a topological space (X, r), the following properties hold:

1. If A is $s(\Lambda, \theta)$-open, then $A^{(\Lambda, \theta)}$ is $r(\Lambda, \theta)$-closed.
2. If A is $p(\Lambda, \theta)$-open, then $A^{(\Lambda, \theta)}$ is $r(\Lambda, \theta)$-closed.
3. If A is $a(\Lambda, \theta)$-open, then $A^{(\Lambda, \theta)}$ is $r(\Lambda, \theta)$-closed.

Proposition 3.26. For a subset A of a topological space (X, r), the following properties are equivalent:

1. $A \in \beta \Lambda \cup O(X, r)$.
2. $A^{(\Lambda, \theta)} \in r \Lambda \cup C(X, r)$.
3. $A^{(\Lambda, \theta)} \in \beta \Lambda \cup O(X, r)$.
4. $A^{(\Lambda, \theta)} \in s \Lambda \cup O(X, r)$.
5. $A^{(\Lambda, \theta)} \in b \Lambda \cup O(X, r)$.

Proof. (1) \Rightarrow (2): Suppose that $A \in \beta \Lambda \cup O(X, r)$. Then, we have

$A \subseteq \{A^{(\Lambda, \theta)}\}_{\theta}^{(\Lambda, \theta)}$

and hence, $A^{(\Lambda, \theta)} \subseteq \{A^{(\Lambda, \theta)}\}_{\theta}^{(\Lambda, \theta)} \subseteq A^{(\Lambda, \theta)}$. This implies that $A^{(\Lambda, \theta)} = \{A^{(\Lambda, \theta)}\}_{\theta}^{(\Lambda, \theta)}$.

Therefore, we obtain $A^{(\Lambda, \theta)} \in r \Lambda \cup C(X, r)$.

(2) \Rightarrow (3): Suppose that $A^{(\Lambda, \theta)} \in r \Lambda \cup C(X, r)$. Then, we have

$A^{(\Lambda, \theta)} = \{A^{(\Lambda, \theta)}\}_{\theta}^{(\Lambda, \theta)}$

and so $A^{(\Lambda, \theta)} = \{A^{(\Lambda, \theta)}\}_{\theta}^{(\Lambda, \theta)} = \{A^{(\Lambda, \theta)}\}_{\theta}^{(\Lambda, \theta)}$. Therefore, we obtain $A^{(\Lambda, \theta)} \in \beta \Lambda \cup O(X, r)$.

(3) \Rightarrow (4): Suppose that $A^{(\Lambda, \theta)} \in \beta \Lambda \cup O(X, r)$. Then, we have

$A^{(\Lambda, \theta)} \subseteq \{A^{(\Lambda, \theta)}\}_{\theta}^{(\Lambda, \theta)}$

and so $A^{(\Lambda, \theta)} \subseteq \{A^{(\Lambda, \theta)}\}_{\theta}^{(\Lambda, \theta)}$. Consequently, we obtain $A^{(\Lambda, \theta)} \in s \Lambda \cup O(X, r)$.

(4) \Rightarrow (5): Follows from Remark 3.19.

(5) \Rightarrow (1): Suppose that $A^{(\Lambda, \theta)} \in b \Lambda \cup O(X, r)$. Then, we have

$A \subseteq A^{(\Lambda, \theta)} \subseteq \{A^{(\Lambda, \theta)}\}_{\theta}^{(\Lambda, \theta)} \cup \{A^{(\Lambda, \theta)}\}_{\theta}^{(\Lambda, \theta)} = \{A^{(\Lambda, \theta)}\}_{\theta}^{(\Lambda, \theta)} \cup \{A^{(\Lambda, \theta)}\}_{\theta}^{(\Lambda, \theta)} = \{A^{(\Lambda, \theta)}\}_{\theta}^{(\Lambda, \theta)}$. Consequently, we obtain $A \in \beta \Lambda \cup O(X, r)$.

Corollary 3.27. For a subset A of a topological space (X, r), the following properties are equivalent:

1. $A \in \beta \Lambda \cup C(X, r)$.
2. $A_{\theta}^{(\Lambda, \theta)} \in r \Lambda \cup O(X, r)$.
3. $A_{\theta}^{(\Lambda, \theta)} \in \beta \Lambda \cup C(X, r)$.
4. $A_{\theta}^{(\Lambda, \theta)} \in s \Lambda \cup C(X, r)$.
5. $A_{\theta}^{(\Lambda, \theta)} \in b \Lambda \cup C(X, r)$.

Definition 3.28. A subset A of a topological space (X, r) is called $r(\Lambda, \theta)$-open if there exists a $r(\Lambda, \theta)$-open set U such that $U \subseteq A \subseteq U^{(\Lambda, \theta)}$. The complement of a $r(\Lambda, \theta)$-open set is called $r(\Lambda, \theta)$-closed.

The family of all $r(\Lambda, \theta)$-open (resp. $r(\Lambda, \theta)$-closed) sets in a topological space (X, r) is denoted by $r\Lambda \cup O(X, r)$ (resp. $r\Lambda \cup C(X, r)$).
Proposition 3.29. Let A be a subset of a topological space (X, τ). If A is $rs(\Lambda, \theta)$-open, then $A \subseteq [A(\Lambda, \theta)|^{(\Lambda, \theta)}].$

Proof. Suppose that A is a $rs(\Lambda, \theta)$-open set. Then, there exists a $r(\Lambda, \theta)$-open set U such that $U \subseteq A \subseteq U^{(\Lambda, \theta)}$. Therefore, we obtain $U \subseteq A^{(\Lambda, \theta)}$ and so

$$A \subseteq [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}.$$

Proposition 3.30. For a subset A of a topological space (X, τ), the following properties are equivalent:

1. A is $rs(\Lambda, \theta)$-open.
2. A is $s(\Lambda, \theta)$-open and $s(\Lambda, \theta)$-closed.
3. A is $b(\Lambda, \theta)$-open and $s(\Lambda, \theta)$-closed.
4. A is $\beta(\Lambda, \theta)$-open and $s(\Lambda, \theta)$-closed.
5. A is $s(\Lambda, \theta)$-open and $b(\Lambda, \theta)$-closed.
6. A is $s(\Lambda, \theta)$-open and $\beta(\Lambda, \theta)$-closed.

Proof. (1) \Rightarrow (2): Suppose that A is a $rs(\Lambda, \theta)$-open set. Then, there exist a $r(\Lambda, \theta)$-open set V such that $V \subseteq A \subseteq V^{(\Lambda, \theta)}$. Therefore, we obtain $V \subseteq A^{(\Lambda, \theta)}$ and hence, $A \subseteq (\Lambda, \theta)]^{(\Lambda, \theta)}$. This shows that A is $s(\Lambda, \theta)$-open. Since $V^{(\Lambda, \theta)} = A^{(\Lambda, \theta)}$ and V is $r(\Lambda, \theta)$-open, $[A^{(\Lambda, \theta)}]^{(\Lambda, \theta)} = V^{(\Lambda, \theta)} = V \subseteq A$. Thus, by Proposition 3.7(1), A is $s(\Lambda, \theta)$-closed. Consequently, we obtain A is $s(\Lambda, \theta)$-open and $s(\Lambda, \theta)$-closed.

(2) \Rightarrow (3) and (3) \Rightarrow (4): This is obvious since $s_A \subseteq O(X, \tau) \subseteq b_A \subseteq \beta_A(X, \tau)$.

(4) \Rightarrow (5): Follows from Lemma 3.23 and hence, $s_A \subseteq O(X, \tau) \subseteq b_A \subseteq \beta_A(X, \tau)$.

(5) \Rightarrow (6): This is obvious since $b_A \subseteq \beta_A(X, \tau)$.

(6) \Rightarrow (1): Suppose that A is $s(\Lambda, \theta)$-open and $\beta(\Lambda, \theta)$-closed. Since A is $s(\Lambda, \theta)$-open and $\beta(\Lambda, \theta)$-closed, it follows from Lemma 3.23 that A is $s(\Lambda, \theta)$-closed. Thus, by Proposition 3.7(1), $A^{(\Lambda, \theta)} = A \subseteq A^{(\Lambda, \theta)} \subseteq [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}$. Put $V = [A^{(\Lambda, \theta)}]^{(\Lambda, \theta)}$, then V is a $r(\Lambda, \theta)$-open set such that $V \subseteq A \subseteq V^{(\Lambda, \theta)}$. Therefore, we obtain A is $rs(\Lambda, \theta)$-open.

Proposition 3.31. Let (X, τ) be a topological space and $x \in X$. Then $\{x\}$ is (Λ, θ)-open if and only if $\{x\}$ is $s(\Lambda, \theta)$-open.

Proof. The necessity is clear. Suppose that $\{x\}$ is $s(\Lambda, \theta)$-open. Then, we have $\{x\} \subseteq [\{x\}]^{(\Lambda, \theta)}$. Now, $\{x\}^{(\Lambda, \theta)}$ is either $\{x\}$ or \emptyset. Since $\emptyset^{(\Lambda, \theta)} = \emptyset$ and $\{x\} \subseteq [\{x\}]^{(\Lambda, \theta)}$, $\{x\}^{(\Lambda, \theta)} \neq \emptyset$. Therefore, we obtain $\{x\}^{(\Lambda, \theta)} = \{x\}$. This shows that $\{x\}$ is (Λ, θ)-open.

Lemma 3.32. Let A be a subset of a topological space (X, τ) and $U \in \Lambda \cup O(X, \tau)$. If $U \cap A = \emptyset$, then $A \cap U^{(\Lambda, \theta)} = \emptyset$.

Proposition 3.33. Let (X, τ) be a topological space and $x \in X$. Then, the following properties are equivalent:

1. $\{x\}$ is $p(\Lambda, \theta)$-open.
2. $\{x\}$ is $b(\Lambda, \theta)$-open.
3. $\{x\}$ is $\beta(\Lambda, \theta)$-open.

Proof. (1) \Rightarrow (2) and (2) \Rightarrow (3) follows from Remark 3.19.

(3) \Rightarrow (1): Let $\{x\}$ be $\beta(\Lambda, \theta)$-open. Suppose that $\{x\}$ is not $p(\Lambda, \theta)$-open. Then, we have $\{x\} \not\subseteq [\{x\}]^{(\Lambda, \theta)}$ and so $\{x\} \cap [\{x\}]^{(\Lambda, \theta)} = \emptyset$. Since $[\{x\}]^{(\Lambda, \theta)}$ is (Λ, θ)-open, it follows from
Lemma 3.32 that \(\{x\}^{(\Lambda^\theta)} \cap \{\{x\}^{(\Lambda^\theta)}\}_{x} = \emptyset \) and hence, \(\{\{x\}^{(\Lambda^\theta)}\}_{x} = \emptyset \). Therefore, we obtain \(\{\{x\}^{(\Lambda^\theta)}\}_{x} = 0 \). This is a contradiction.

Proposition 3.34. Let \((X, \tau) \) be a topological space and \(x \in X \). Then \(\{x\} \) is \(p(\Lambda, \theta) \)-open or \(a(\Lambda, \theta) \)-closed.

Proof. Suppose that \(\{x\} \) is not \(p(\Lambda, \theta) \)-open. Then, we have \(\{x\} \not\subseteq \{\{x\}^{(\Lambda^\theta)}\}_{x} \) and so \(\{x\} \cap \{\{x\}^{(\Lambda^\theta)}\}_{x} = \emptyset \). Since \(\{\{x\}^{(\Lambda^\theta)}\}_{x} = (\Lambda, \theta) \)-open, it follows from Lemma 3.32 that \(\{x\}^{(\Lambda^\theta)} \cap \{\{x\}^{(\Lambda^\theta)}\}_{x} = \emptyset \) and hence, \(\{\{x\}^{(\Lambda^\theta)}\}_{x} = \emptyset \). Therefore, we obtain, \(\{\{x\}^{(\Lambda^\theta)}\}_{x} = 0 \). By Proposition 3.7(3), \(\{x\} \) is \(a(\Lambda, \theta) \)-closed.

Proposition 3.35. A subset \(A \) of a topological space \((X, \tau) \) is \(s(\Lambda, \theta) \)-open if and only if there exists a \((\Lambda, \theta) \)-open set \(U \) such that \(U \subseteq A \subseteq U^{(\Lambda^\theta)} \).

Proof. Suppose that \(A \) is \(s(\Lambda, \theta) \)-open. Then, we have \(A \subseteq [A]^{(\Lambda^\theta)} \). Put \(U = [A]^{(\Lambda^\theta)} \), then \(U \) is a \((\Lambda, \theta) \)-open set such that \(U \subseteq A \subseteq U^{(\Lambda^\theta)} \).

Conversely, suppose that there exists \(a(\Lambda, \theta) \)-open set \(U \) such that \(U \subseteq A \subseteq U^{(\Lambda^\theta)} \). Then \(U \subseteq A^{(\Lambda^\theta)} \) and thus \(U^{(\Lambda^\theta)} \subseteq [A]^{(\Lambda^\theta)} \), but \(A \subseteq U^{(\Lambda^\theta)} \), so \(A \subseteq [A]^{(\Lambda^\theta)} \). Consequently, we obtain \(A \) is \(s(\Lambda, \theta) \)-open.

Proposition 3.36. Let \(A \) be a subset of a topological space \((X, \tau) \). If there exists a \(p(\Lambda, \theta) \)-open set \(U \) such that \(U \subseteq A \subseteq U^{(\Lambda^\theta)} \), then \(A \) is \(\beta(\Lambda, \theta) \)-open.

Proof. Since \(U \subseteq A \subseteq U^{(\Lambda^\theta)} \), it follows that \(A^{(\Lambda^\theta)} = U^{(\Lambda^\theta)} \) and \([A]^{(\Lambda^\theta)} = [U^{(\Lambda^\theta)}] \), but \(U \) is \(p(\Lambda, \theta) \)-open, so \(U \subseteq [A]^{(\Lambda^\theta)} \) and \(A \subseteq U^{(\Lambda^\theta)} \). Therefore, we obtain \(A \subseteq [A]^{(\Lambda^\theta)} \). This shows that \(A \) is \(\beta(\Lambda, \theta) \)-open.

Definition 3.37. A subset \(D \) of a topological space \((X, \tau) \) is called \(\Lambda^\theta \)-dense if \(D^{(\Lambda^\theta)} = X \). \(D \) is called \(\Lambda^\theta \)-codense if \(X - D \) is \(\Lambda^\theta \)-dense.

Proposition 3.38. For a subset \(D \) of a topological space \((X, \tau) \), the following properties are equivalent:

1. \(D \) is \(\Lambda^\theta \)-dense.
2. If \(F \) is any \((\Lambda, \theta) \)-closed set and \(D \subseteq F \), then \(F = X \).
3. Each non-empty \((\Lambda, \theta) \)-open set contains an element of \(D \).
4. The complement of \(D \) has empty \((\Lambda, \theta) \)-interior.

Proof. (1) \(\Rightarrow \) (2): Let \(F \) be a \((\Lambda, \theta) \)-closed set such that \(D \subseteq F \). Then \(X = D^{(\Lambda^\theta)} \subseteq F^{(\Lambda^\theta)} \).

(2) \(\Rightarrow \) (3): Let \(U \) be non-empty \((\Lambda, \theta) \)-open set such that \(U \cap D = \emptyset \); then \(D \subseteq X - U \neq \emptyset \), which contradicts (2), since \(X - U \) is \((\Lambda, \theta) \)-closed.

(3) \(\Rightarrow \) (4): Suppose that \(|X - D|^{(\Lambda^\theta)} \neq \emptyset \); since \(|X - D|^{(\Lambda^\theta)} \) is a \((\Lambda, \theta) \)-open set such that \(|X - D|^{(\Lambda^\theta)} \subseteq X - D \), we have \(|X - D|^{(\Lambda^\theta)} \) contains no point of \(D \).

(4) \(\Rightarrow \) (1): \(|X - D|^{(\Lambda^\theta)} = X - D^{(\Lambda^\theta)} = \emptyset \) so that \(D^{(\Lambda^\theta)} = X \).

Remark 3.39. Let \(A \) be a subset of a topological space \((X, \tau) \). If \(A \) is \(\Lambda^\theta \)-dense, then \(A \) is \(p(\Lambda, \theta) \)-open.

Proposition 3.40. Let \(A \) be a subset of a topological space \((X, \tau) \). If \(A \) is \(p(\Lambda, \theta) \)-open, then \(A \) is the intersection of a \(r(\Lambda, \theta) \)-open set and a \(\Lambda^\theta \)-dense set.
Proof. Suppose that A is $p(\Lambda, \theta)$-open. Then, we have $A \subseteq A^{(\Lambda, \theta)}_{(\Lambda, \theta)}$ and so $A = [A \cup X - A^{(\Lambda, \theta)}_{(\Lambda, \theta)}] \cap A^{(\Lambda, \theta)}_{(\Lambda, \theta)}$. Let $C = A^{(\Lambda, \theta)}_{(\Lambda, \theta)}$ and $D = A \cup X - A^{(\Lambda, \theta)}_{(\Lambda, \theta)}$. Then C is $r(\Lambda, \theta)$-open by Proposition 3.8(1), also $A^{(\Lambda, \theta)} \subseteq D^{(\Lambda, \theta)}$ since $A \subseteq D$ and $X - A^{(\Lambda, \theta)} \subseteq D^{(\Lambda, \theta)}$. Thus, $D^{(\Lambda, \theta)} = X$.

Corollary 3.41. Let A be a subset of a topological space (X, r). If A is $p(\Lambda, \theta)$-closed, then A is the union of a $r(\Lambda, \theta)$-closed set and a set has empty (Λ, θ)-interior.

Proposition 3.42. Let A be a subset of a topological space (X, r). If A is $s(\Lambda, \theta)$-open, then A is the intersection of a $r(\Lambda, \theta)$-closed set and a set whose (Λ, θ)-interior is Λ^{θ}-dense.

Proof. Suppose that A is $s(\Lambda, \theta)$-open, that is $A \subseteq A^{(\Lambda, \theta)}_{(\Lambda, \theta)}$. Then, we have $A = [A \cup X - A^{(\Lambda, \theta)}_{(\Lambda, \theta)}] \cap A^{(\Lambda, \theta)}_{(\Lambda, \theta)}$. Let $F = A^{(\Lambda, \theta)}_{(\Lambda, \theta)}$ and $C = A \cup X - A^{(\Lambda, \theta)}_{(\Lambda, \theta)}$.

Then F is $r(\Lambda, \theta)$-closed by Proposition 3.8(2), also $A^{(\Lambda, \theta)}_{(\Lambda, \theta)} \subseteq C^{(\Lambda, \theta)}_{(\Lambda, \theta)}$ since $A \subseteq C$ but $X - A^{(\Lambda, \theta)}_{(\Lambda, \theta)} \subseteq C$ and $X - A^{(\Lambda, \theta)}_{(\Lambda, \theta)}$ is (Λ, θ)-open, so $X - A^{(\Lambda, \theta)}_{(\Lambda, \theta)} \subseteq C_{(\Lambda, \theta)} \subseteq [C^{(\Lambda, \theta)}_{(\Lambda, \theta)}]^{(\Lambda, \theta)}$. Consequently, $C^{(\Lambda, \theta)}_{(\Lambda, \theta)} = X$.

Corollary 3.43. Let A be a subset of a topological space (X, r). If A is $s(\Lambda, \theta)$-closed, then A is the union of a $r(\Lambda, \theta)$-open set and a set whose (Λ, θ)-closure has empty (Λ, θ)-interior.

Proposition 3.44. Let A be a subset of a topological space (X, r). If A is $b(\Lambda, \theta)$-open, then A is the intersection of a $r(\Lambda, \theta)$-closed set and a Λ^{θ}-dense set.

Proof. Suppose that A is $b(\Lambda, \theta)$-open. Then, we have $A \subseteq [A^{(\Lambda, \theta)}_{(\Lambda, \theta)}]^{(\Lambda, \theta)}$ and so $A = [A \cup X - A^{(\Lambda, \theta)}_{(\Lambda, \theta)}] \cap [A^{(\Lambda, \theta)}_{(\Lambda, \theta)}]^{(\Lambda, \theta)}$. Let $F = [A^{(\Lambda, \theta)}_{(\Lambda, \theta)}]^{(\Lambda, \theta)}$ and $D = A \cup X - A^{(\Lambda, \theta)}_{(\Lambda, \theta)}$. Then F is $r(\Lambda, \theta)$-closed by Proposition 3.8(2), also $A^{(\Lambda, \theta)} \subseteq D^{(\Lambda, \theta)}$. Since $X - A^{(\Lambda, \theta)} \subseteq D \subseteq D^{(\Lambda, \theta)}$, we have $D^{(\Lambda, \theta)} = X$.

Corollary 3.45. Let A be a subset of a topological space (X, r). If A is $b(\Lambda, \theta)$-closed, then A is the union of a $r(\Lambda, \theta)$-open set and a set has empty (Λ, θ)-interior.

Theorem 3.46. For a topological space (X, r), the following properties are equivalent:

1. Every $s(\Lambda, \theta)$-open set is $a(\Lambda, \theta)$-open.
2. Every $s(\Lambda, \theta)$-open set is $p(\Lambda, \theta)$-open.
3. Every $b(\Lambda, \theta)$-open set is $p(\Lambda, \theta)$-open.
4. Every $b(\Lambda, \theta)$-open set is $p(\Lambda, \theta)$-open.
5. Every $r(\Lambda, \theta)$-open set is $p(\Lambda, \theta)$-open.
6. Every $r(\Lambda, \theta)$-open set is $p(\Lambda, \theta)$-open.
7. Every $r(\Lambda, \theta)$-closed set is $p(\Lambda, \theta)$-open.
8. Every $r(\Lambda, \theta)$-closed set is (Λ, θ)-open.

Proof. (1) \Rightarrow (2): Let A be a $s(\Lambda, \theta)$-open set. By (1), we have A is $a(\Lambda, \theta)$-open and so $A \subseteq [A^{(\Lambda, \theta)}_{(\Lambda, \theta)}]^{(\Lambda, \theta)} \subseteq A^{(\Lambda, \theta)}_{(\Lambda, \theta)}$. Consequently, we obtain A is $p(\Lambda, \theta)$-open.

(2) \Rightarrow (3): Let A be a $b(\Lambda, \theta)$-open set. Then, we have $A \subseteq [A^{(\Lambda, \theta)}_{(\Lambda, \theta)}]^{(\Lambda, \theta)}$. It follows from Proposition 3.5(2) that $B = [A^{(\Lambda, \theta)}_{(\Lambda, \theta)}]^{(\Lambda, \theta)}$ is $r(\Lambda, \theta)$-closed and so B is $s(\Lambda, \theta)$-open. By (2), B is $p(\Lambda, \theta)$-open and hence, $A \subseteq B \subseteq B^{(\Lambda, \theta)}_{(\Lambda, \theta)} = B_{(\Lambda, \theta)}$. Also, it is clear that $B \subseteq A^{(\Lambda, \theta)}$ and thus, $B_{(\Lambda, \theta)} \subseteq A^{(\Lambda, \theta)}_{(\Lambda, \theta)}$. Therefore, $A \subseteq A^{(\Lambda, \theta)}_{(\Lambda, \theta)}$. This shows that A is $p(\Lambda, \theta)$-open.

(3) \Rightarrow (4): Let A be a $b(\Lambda, \theta)$-open set. By (3) and Remark 3.19, we obtain A is $p(\Lambda, \theta)$-open.
(4) \Rightarrow (5): It follows from Proposition 3.30 that \(r_s\Lambda_\theta O(X, \tau) \subseteq s\Lambda_\theta O(X, \tau) \), but \(s\Lambda_\theta O(X, \tau) \subseteq b\Lambda_\theta O(X, \tau) \), thus \(r_s\Lambda_\theta O(X, \tau) \subseteq b\Lambda_\theta O(X, \tau) \). Therefore, the result follows from (4).

(5) \Rightarrow (6): Since every \(r_s(\Lambda, \theta) \)-open set is \(s(\Lambda, \theta) \)-closed, it follows from (5) that a \(rs(\Lambda, \theta) \)-open set is both \(s(\Lambda, \theta) \)-closed and \(p(\Lambda, \theta) \)-open. Thus by Proposition 3.9(4), (6) follows.

(6) \Rightarrow (7): Suppose that every \(rs(\Lambda, \theta) \)-open set is \(r(\Lambda, \theta) \)-open. Let \(A \) be a \(r(\Lambda, \theta) \)-closed set. Then, we have \(A = [A(\Lambda, \theta)](\Lambda, \theta) \). Put \(V = [A(\Lambda, \theta)](\Lambda, \theta) \), then \(V \) is a \(r(\Lambda, \theta) \)-open set such that \(V \subseteq A \subseteq V(\Lambda, \theta) \). This shows that \(A \) is \(rs(\Lambda, \theta) \)-open. By (6), we obtain \(A \) is \(r(\Lambda, \theta) \)-open and so \(A \) is \(p(\Lambda, \theta) \)-open.

(7) \Rightarrow (8): Suppose that every \(r(\Lambda, \theta) \)-closed set is \(p(\Lambda, \theta) \)-open. Let \(A \) be a \(r(\Lambda, \theta) \)-closed set. By (7), we have \(A \) is \(p(\Lambda, \theta) \)-open. Therefore,

\[A \subseteq [A(\Lambda, \theta)](\Lambda, \theta) = [A(\Lambda, \theta)](\Lambda, \theta) = A(\Lambda, \theta). \]

Consequently, we obtain \(A \) is \((\Lambda, \theta) \)-open.

(8) \Rightarrow (1): Let \(A \) be a \(s(\Lambda, \theta) \)-open set. Then by Corollary 3.25, \(A(\Lambda, \theta) \) is \(r(\Lambda, \theta) \)-closed. Thus by (8), \(A(\Lambda, \theta) \) is \((\Lambda, \theta) \)-open and so \(A \subseteq A(\Lambda, \theta) = [A(\Lambda, \theta)](\Lambda, \theta) \). Consequently, \(A \) is \(p(\Lambda, \theta) \)-open. Since \(A \in s\Lambda_\theta O(X, \tau) \cap p\Lambda_\theta O(X, \tau) = a\Lambda_\theta O(X, \tau) \), (1) follows.

Remark 3.47. It is clear from Proposition 3.30 that if \(A \) is a \(rs(\Lambda, \theta) \)-open set of a topological space \((X, \tau)\), then \(X - A \) is \(rs(\Lambda, \theta) \)-open.

Corollary 3.48. For a topological space \((X, \tau)\), the following properties are equivalent:

1. \(\alpha\Lambda_\theta O(X, \tau) = s\Lambda_\theta O(X, \tau) \).
2. Every \(rs(\Lambda, \theta) \)-open set of \(X \) is \(p(\Lambda, \theta) \)-closed.
3. Every \(rs(\Lambda, \theta) \)-open set of \(X \) is \(r(\Lambda, \theta) \)-closed.

Proof. Follows from Theorem 3.46 and Remark 3.47.

Definition 3.49. Let \((X, \tau)\) be a topological space. A subset \(A \) of \(X \) is called \(p(\Lambda, \theta) \)-clopen if \(A \) is both \(p(\Lambda, \theta) \)-open and \(p(\Lambda, \theta) \)-closed.

Corollary 3.50. For a topological space \((X, \tau)\), the following properties are equivalent:

1. \(\alpha\Lambda_\theta O(X, \tau) = s\Lambda_\theta O(X, \tau) \).
2. Every \(rs(\Lambda, \theta) \)-open set of \(X \) is \(p(\Lambda, \theta) \)-clopen.
3. Every \(rs(\Lambda, \theta) \)-open set of \(X \) is \((\Lambda, \theta) \)-clopen.

Proof. Follows from Theorem 3.46 and Corollary 3.48.

Proposition 3.51. For a topological space \((x, \tau)\), the following properties are equivalent:

1. Every \(\alpha(\Lambda, \theta) \)-open subset of \(X \) is \(p(\Lambda, \theta) \)-open.
2. Every \(\alpha(\Lambda, \theta) \)-open subset of \(X \) is \(s(\Lambda, \theta) \)-open.

Proof. Follows from Proposition 3.3(3).

Definition 3.52. A topological space \((X, \tau)\) is said to be \(\Lambda_\theta \)-submaximal if each \(\Lambda_\theta \)-dense subset of \(X \) is \((\Lambda, \theta) \)-open.

Proposition 3.53. Let \((X, \tau)\) be a topological space. If each \(p(\Lambda, \theta) \)-open set is \(s(\Lambda, \theta) \)-open and each \(\alpha(\Lambda, \theta) \)-open set is \((\Lambda, \theta) \)-open, then \((X, \tau)\) is \(\Lambda_\theta \)-submaximal.

Proof. Let \(D \) be a \(\Lambda_\theta \)-dense subset of \(X \). Since \(D(\Lambda, \theta) = X \), then \(D \) is a \(p(\Lambda, \theta) \)-open set. This implies that \(D \) is a \(s(\Lambda, \theta) \)-open set. Since any set is \(\alpha(\Lambda, \theta) \)-open if and only if it is \(s(\Lambda, \theta) \)-open and
$p(\Lambda, \theta)$-open, then D is a $\alpha(\Lambda, \theta)$-open set. Hence, since each $\alpha(\Lambda, \theta)$-open set is (Λ, θ)-open, we have D is (Λ, θ)-open. Thus, (X, τ) is Λ_θ-submaximal.

Proposition 3.54. Let (X, τ) be a topological space. If each $p(\Lambda, \theta)$-open set is (Λ, θ)-open, then (X, τ) is Λ_θ-submaximal.

Proof. Suppose that each $p(\Lambda, \theta)$-open set is (Λ, θ)-open. It follows that every $p(\Lambda, \theta)$-open set is $s(\Lambda, \theta)$-open. Since each $\alpha(\Lambda, \theta)$-open set is $p(\Lambda, \theta)$-open, then each $\alpha(\Lambda, \theta)$-open set is (Λ, θ)-open. Thus, by Proposition 3.53, (X, τ) is Λ_θ-submaximal.

Proposition 3.55. For a topological space (X, τ), the following properties are equivalent:

1. (X, τ) is Λ_θ-submaximal.
2. Each Λ_θ-codense subset C of X is (Λ, θ)-closed.

Definition 3.56. Let (X, τ) be a topological space. A subset A of X is said to be locally (Λ, θ)-closed if $A = U \cap F$, where $U \in \Lambda_\theta O(X, \tau)$ and F is (Λ, θ)-closed.

Theorem 3.57. For a subset A of a topological space (X, τ), the following properties are equivalent:

1. A is locally (Λ, θ)-closed.
2. $A = U \cap A^{(\Lambda, \theta)}$ for some $U \in \Lambda_\theta O(X, \tau)$.
3. $A^{(\Lambda, \theta)} - A$ is (Λ, θ)-closed.
4. $A \cup [X - A^{(\Lambda, \theta)}] \in \Lambda_\theta O(X, \tau)$.
5. $A \subseteq [A \cup [X - A^{(\Lambda, \theta)}]]^{(\Lambda, \theta)}$.

Proof. (1) \Rightarrow (2): Suppose that $A = U \cap F$, where $U \in \Lambda_\theta O(X, \tau)$ and F is (Λ, θ)-closed. Since $A \subseteq F$, we have $A^{(\Lambda, \theta)} \subseteq F^{(\Lambda, \theta)} = F$. Since $A \subseteq U$,

$$A \subseteq U \cap A^{(\Lambda, \theta)} \subseteq U \cap F = A.$$

Therefore, we obtain $A = U \cap A^{(\Lambda, \theta)}$ for some $U \in \Lambda_\theta O(X, \tau)$.

(2) \Rightarrow (3): Suppose that $A = U \cap A^{(\Lambda, \theta)}$ for some $U \in \Lambda_\theta O(X, \tau)$. Then, $A^{(\Lambda, \theta)} - A = [X - (U \cap A^{(\Lambda, \theta)})] \cap A^{(\Lambda, \theta)} = (X - U) \cap A^{(\Lambda, \theta)}$. Since $(X - U) \cap A^{(\Lambda, \theta)}$ is (Λ, θ)-closed and hence, $A^{(\Lambda, \theta)} - A$ is (Λ, θ)-closed.

(3) \Rightarrow (4): We have $X - [A^{(\Lambda, \theta)} - A] = [X - A^{(\Lambda, \theta)}] \cup A$ and hence, by (3) we obtain $A \cup [X - A^{(\Lambda, \theta)}] \in \Lambda_\theta O(X, \tau)$.

(4) \Rightarrow (5): By (4), $A \subseteq A \cup [X - A^{(\Lambda, \theta)}] = [A \cup [X - A^{(\Lambda, \theta)}]]^{(\Lambda, \theta)}$.

(5) \Rightarrow (1): We put $U = [A \cup [X - A^{(\Lambda, \theta)}]]^{(\Lambda, \theta)}$.

Then $U \in \Lambda_\theta O(X, \tau)$ and

$$A = A \cap U \subseteq U \cap A^{(\Lambda, \theta)} \subseteq [A \cup [X - A^{(\Lambda, \theta)}]]^{(\Lambda, \theta)} \cap A^{(\Lambda, \theta)} = A \cap A^{(\Lambda, \theta)} = A.$$

Therefore, we obtain $A = U \cap A^{(\Lambda, \theta)}$, where $U \in \Lambda_\theta O(X, \tau)$ and $A^{(\Lambda, \theta)}$ is (Λ, θ)-closed. Consequently, A is locally (Λ, θ)-closed.

Theorem 3.58. For a topological space (X, τ), the following properties are equivalent:

1. (X, τ) is Λ_θ-submaximal.
2. Each subset of X is a locally (Λ, θ)-closed set.
3. Each Λ_θ-dense subset of X is an intersection of a (Λ, θ)-closed set and a (Λ, θ)-open set.

Proof. (1) \Rightarrow (2): Suppose that (X, τ) is Λ_θ-submaximal and $A \subseteq X$. This implies that $[X - A^{(\Lambda, \theta)} - A]^{(\Lambda, \theta)} = [A \cup [X - A^{(\Lambda, \theta)}]]^{(\Lambda, \theta)} = X$. Since $X - [A^{(\Lambda, \theta)} - A]$ is Λ_θ-dense set, then $X - [A^{(\Lambda, \theta)} - A]$ is a (Λ, θ)-open set. It follows that $A^{(\Lambda, \theta)} - A$ is (Λ, θ)-closed. Consequently, $X - [A^{(\Lambda, \theta)} - A] = A \cup [X - A^{(\Lambda, \theta)}]$ is (Λ, θ)-open. Thus, $A = [A \cup [X - A^{(\Lambda, \theta)}]] \cap A^{(\Lambda, \theta)}$ is a locally (Λ, θ)-closed set.
(2) \Rightarrow (3): Suppose that every subset of X is a locally (Λ, θ)-closed set. Let D be a Λ_θ-dense set. By (2), we have D is locally (Λ, θ)-closed. Consequently, we obtain D is an intersection of a (Λ, θ)-closed set and a (Λ, θ)-open set.

(3) \Rightarrow (1): Let D be a Λ_θ-dense set. There exist a (Λ, θ)-open set U and a (Λ, θ)-closed set F such that $D = U \cap F$. Since $D \subseteq F$ and D is a Λ_θ-dense set, then $F_{(\Lambda, \theta)} \supseteq |D_{(\Lambda, \theta)}|_{(\Lambda, \theta)} = X_{(\Lambda, \theta)} = X$. This implies that $F = X$ and $D = U$ is (Λ, θ)-open. Hence, (X, τ) is Λ_θ-submaximal.

Theorem 3.59. For a topological space (X, τ), the following properties are equivalent:

(1) (X, τ) is Λ_θ-submaximal.

(2) Each Λ_θ-dense subset of X is an union of a (Λ, θ)-open set and a (Λ, θ)-closed set.

Proof. This is an immediate consequence of Theorem 3.58.

Definition 3.60. [7] A topological space (X, τ) is said to be:

(1) Λ_θ-T_0 if for any distinct pair of points x and y in X, there exists a (Λ, θ)-open set containing one of the points but not the other;

(2) Λ_θ-T_1 if for any distinct pair of points x and y in X, there exist a (Λ, θ)-open set U containing x but not y and a (Λ, θ)-open set V containing y but not x.

First, we investigate characterizations of Λ_θ-T_0 and Λ_θ-T_1 spaces.

Theorem 3.61. A topological space (X, τ) is Λ_θ-T_0 if and only if for each pair of distinct points x, y in X, $\{x\}^{(\Lambda, \theta)} \neq \{y\}^{(\Lambda, \theta)}$.

Proof. Suppose that $x, y \in X$, $x \neq y$ and $\{x\}^{(\Lambda, \theta)} \neq \{y\}^{(\Lambda, \theta)}$. Let z be a point of X such that $z \in \{x\}^{(\Lambda, \theta)}$ but $z \notin \{y\}^{(\Lambda, \theta)}$. We claim that $x \notin \{y\}^{(\Lambda, \theta)}$. For, if $x \in \{y\}^{(\Lambda, \theta)}$, then $\{x\}^{(\Lambda, \theta)} \subseteq \{y\}^{(\Lambda, \theta)}$. This contradicts the fact that $z \notin \{y\}^{(\Lambda, \theta)}$. Consequently, x belongs to the (Λ, θ)-open set $X - \{y\}^{(\Lambda, \theta)}$ to which y does not belong.

Conversely, suppose that (X, τ) is a Λ_θ-T_0 space and let x, y be any two distinct points of X. There exists a (Λ, θ)-open set G containing x or y, say x but not y. Then $X - G$ is a (Λ, θ)-closed set which does not contain x but contains y. Since $\{y\}^{(\Lambda, \theta)}$ is the smallest (Λ, θ)-closed set containing y, $\{y\}^{(\Lambda, \theta)} \subseteq X - G$, and so $x \notin \{y\}^{(\Lambda, \theta)}$. Consequently, we obtain $\{x\}^{(\Lambda, \theta)} \neq \{y\}^{(\Lambda, \theta)}$.

Theorem 3.62. A topological space (X, τ) is Λ_θ-T_1 if and only if the singletons are (Λ, θ)-closed sets.

Proof. Suppose that (X, τ) is Λ_θ-T_1 and x any point of X. Let $y \in X - \{x\}$. Then $x \neq y$ and so there exists a (Λ, θ)-open set U_y such that $y \in U_y$ but $x \notin U_y$. Consequently, $y \in U_y \subseteq X - \{x\}$, i.e., $X - \{x\} = \bigcup\{U_y \mid y \in X - \{x\}\}$ which is (Λ, θ)-open.

Conversely, suppose that $\{x\}$ is (Λ, θ)-closed for every $z \in X$. Let $x, y \in X$ such that $x \neq y$. Now $x \neq y$ implies $y \notin X - \{x\}$. Hence, $X - \{y\}$ is a (Λ, θ)-open set containing y but not containing x. Similarly, $X - \{y\}$ is a (Λ, θ)-open set containing x but not containing y. This means that (X, τ) is a Λ_θ-T_1 space.

Definition 3.63. [7] A topological space (X, τ) is said to be:

(1) Λ_θ-R_0 if every (Λ, θ)-open set contains the (Λ, θ)-closure of each of its singletons;

(2) Λ_θ-R_1 if for any points x and y in X, with $\{x\}^{(\Lambda, \theta)} \neq \{y\}^{(\Lambda, \theta)}$, there exist disjoint (Λ, θ)-open sets U and V such that $\{x\}^{(\Lambda, \theta)}$ is a subset of U and $\{y\}^{(\Lambda, \theta)}$ is a subset of V.

Corollary 3.64. [7] A topological space (X, τ) is Λ_θ-R_0 space if and only if for any x and y in X, $\{x\}^{(\Lambda, \theta)} \neq \{y\}^{(\Lambda, \theta)}$ implies $\{x\}^{(\Lambda, \theta)} \cap \{y\}^{(\Lambda, \theta)} = \emptyset$.

Proposition 3.65. [7] For a topological space (X, τ), the following properties are equivalent:

(1) (X, τ) is a Λ_θ-R_0 space.
(2) \(\{x\}^{(\Lambda, \theta)} \) for each \(x \in X \).
(3) \(\{x\} \) is \((\Lambda, \theta) \)-closed for each \(x \in X \).

Proposition 3.66. [7] If \((X, \tau)\) is a \(\Lambda_{\theta}-R_1 \) space, then \((X, \tau)\) \(\Lambda_{\theta}-R_0 \).

Definition 3.67. Let \(A \) be a subset of a topological space \((X, \tau)\). The \((\theta, \Lambda, \theta) \)-closure of \(A \), \(A^{(\theta, \Lambda, \theta)} \), is defined as follows:

\[
A^{(\theta, \Lambda, \theta)} = \{ x \in X \mid A \cap \Lambda y \neq \emptyset \text{ for each } V \in \Lambda_{\theta}O(X, \tau) \text{ containing } x \}.
\]

In Proposition 3.65, a topological space \((X, \tau)\) is \(\Lambda_{\theta}-R_0 \) if and only if \(\{x\} = \{x\}^{(\Lambda, \theta)} \) for each \(x \in X \). For a \(\Lambda_{\theta}-R_1 \) space, we have the following theorem.

Theorem 3.68. A topological space \((X, \tau)\) is \(\Lambda_{\theta}-R_1 \) if and only if \(\{x\} = \{x\}^{(\theta, \Lambda, \theta)} \) for each \(x \in X \).

Proof. Suppose that \((X, \tau)\) is a \(\Lambda_{\theta}-R_1 \) space. By Proposition 3.66, we have \((X, \tau)\) is \(\Lambda_{\theta}-R_0 \) and by Proposition 3.65, \(\{x\} = \{x\}^{(\Lambda, \theta)} \subseteq \{x\}^{(\theta, \Lambda, \theta)} \) for each \(x \in X \). Therefore, \(\{x\} \subseteq \{x\}^{(\theta, \Lambda, \theta)} \) for each \(x \in X \). In order to show the opposite inclusion, suppose that \(y \notin \{x\} \). Then, we have \(\{x\} \neq \{y\} \). Since \((X, \tau)\) is \(\Lambda_{\theta}-R_0 \), by Proposition 3.65, \(\{x\}^{(\Lambda, \theta)} \neq \{y\}^{(\Lambda, \theta)} \). Since \((X, \tau)\) is \(\Lambda_{\theta}-R_1 \), there exist disjoint \(U, V \in \Lambda_{\theta}O(X, \tau) \) such that \(\{x\}^{(\Lambda, \theta)} \subseteq U \) and \(\{y\}^{(\Lambda, \theta)} \subseteq V \). Since \(\{x\} \cap \Lambda y \neq \emptyset \) and \(\{y\} \cap \Lambda x \neq \emptyset \), therefore, we obtain \(\{x\}^{(\theta, \Lambda, \theta)} \subseteq \{x\} \) and hence, \(\{x\}^{(\theta, \Lambda, \theta)} = \{x\} \).

Conversely, suppose that \(\{x\}^{(\theta, \Lambda, \theta)} = \{x\} \) for each \(x \in X \). Then, we have \(\{x\} = \{x\}^{(\theta, \Lambda, \theta)} \supseteq \{x\}^{(\Lambda, \theta)} \supseteq \{x\} \) and \(\{x\} = \{x\}^{(\Lambda, \theta)} \) for each \(x \in X \). By Proposition 3.65, \((X, \tau)\) is \(\Lambda_{\theta}-R_0 \). Suppose that \(\{x\}^{(\Lambda, \theta)} \neq \{y\}^{(\Lambda, \theta)} \). Then by Corollary 3.64, \(\{x\}^{(\Lambda, \theta)} \cap \{y\}^{(\Lambda, \theta)} = \emptyset \). By Proposition 3.65, we have \(\{x\} \cap \{y\} = \emptyset \) and hence, \(\{x\}^{(\theta, \Lambda, \theta)} \cap \{y\}^{(\theta, \Lambda, \theta)} = \emptyset \). Since \(y \notin \{x\}^{(\theta, \Lambda, \theta)} \), there exists a \((\Lambda, \theta) \)-open set \(U \) containing \(y \) such that \(\{x\} \cap \Lambda U = \emptyset \) and so \(U^{(\theta, \Lambda, \theta)} \subseteq X - \{x\} \). Put \(V = X - U^{(\theta, \Lambda, \theta)} \), then \(V \) is \((\Lambda, \theta) \)-open set containing \(x \). Since \((X, \tau)\) is \(\Lambda_{\theta}-R_0 \), we obtain \(\{x\}^{(\Lambda, \theta)} \subseteq V \) and \(\{y\}^{(\Lambda, \theta)} \subseteq U \) such that \(U \cap V = \emptyset \). This shows that \((X, \tau)\) is \(\Lambda_{\theta}-R_1 \).

Theorem 3.69. A topological space \((X, \tau)\) is \(\Lambda_{\theta}-R_1 \) if and only if \(\{x\}^{(\Lambda, \theta)} = \{x\}^{(\theta, \Lambda, \theta)} \) for each \(x \in X \).

Proof. Suppose that \((X, \tau)\) is a \(\Lambda_{\theta}-R_1 \) space. By Theorem 3.68, we have \(\{x\}^{(\Lambda, \theta)} \supseteq \{x\}^{(\theta, \Lambda, \theta)} \supseteq \{x\} \)

Conversely, suppose that \(\{x\}^{(\Lambda, \theta)} = \{x\}^{(\theta, \Lambda, \theta)} \) for each \(x \in X \). First, we show that \((X, \tau)\) is \(\Lambda_{\theta}-R_0 \). Let \(U \in \Lambda_{\theta}O(X, \tau) \) and \(x \in U \). Let \(y \notin U \). Then, we have \(U \cap \{y\}^{(\Lambda, \theta)} = U \cap \{y\}^{(\theta, \Lambda, \theta)} = \emptyset \) and hence, \(y \notin \{x\}^{(\theta, \Lambda, \theta)} \). There exists a \((\Lambda, \theta) \)-open set \(V \) containing \(x \) such that \(\{y\} \cap \{x\}^{(\Lambda, \theta)} = \emptyset \) and so \(y \notin V^{(\Lambda, \theta)} \). Since \(\{x\}^{(\Lambda, \theta)} \subseteq V^{(\Lambda, \theta)} \), \(y \notin \{x\}^{(\Lambda, \theta)} \). This shows that \(\{x\}^{(\Lambda, \theta)} \subseteq U \) and \(\{x\} \) is \(\Lambda_{\theta}-R_0 \). By Proposition 3.65, \(\{x\} = \{x\}^{(\Lambda, \theta)} = \{x\}^{(\theta, \Lambda, \theta)} \) for each \(x \in X \). Hence, by Theorem 3.68 \((X, \tau)\) is \(\Lambda_{\theta}-R_1 \).

4. **Characterizations of \(\Lambda_{\theta} \)-extremally disconnected spaces**

In this section, we introduce the notion of \(\Lambda_{\theta} \)-extremally disconnected spaces. Moreover, several interesting characterizations of these spaces are investigated.

Definition 4.1. A topological space \((X, \tau)\) is called \(\Lambda_{\theta} \)-extremally disconnected if \(U^{(\Lambda, \theta)} \) is \((\Lambda, \theta) \)-open in \((X, \tau)\) for every \((\Lambda, \theta) \)-open set \(U \).

Theorem 4.2. A topological space \((X, \tau)\) is \(\Lambda_{\theta} \)-extremally disconnected if and only if \(U^{(\Lambda, \theta)} \cap V^{(\Lambda, \theta)} = \emptyset \) for every \((\Lambda, \theta) \)-open sets \(U \) and \(V \) such that \(U \cap V = \emptyset \).
Proof. Suppose that U and V are (Λ, θ)-open sets such that $U \cap V = \emptyset$. By Lemma 3.32, we obtain $U^{(\Lambda, \theta)} \cap V = \emptyset$ and $U^{(\Lambda, \theta)} \cap V^{(\Lambda, \theta)} = \emptyset$.

Conversely, let U be any (Λ, θ)-open set. Then $X - U$ is (Λ, θ)-closed and hence, $[X - U]_{(\Lambda, \theta)}$ is (Λ, θ)-open such that $U \cap [X - U]_{(\Lambda, \theta)} = \emptyset$. By hypothesis, we have $U^{(\Lambda, \theta)} \cap [X - U]^{(\Lambda, \theta)} = \emptyset$

which implies that $U^{(\Lambda, \theta)} \cap [X - U]^{(\Lambda, \theta)} = \emptyset$. Therefore, $U^{(\Lambda, \theta)} \subseteq [U^{(\Lambda, \theta)}]_{(\Lambda, \theta)}$ and so $U^{(\Lambda, \theta)} = [U^{(\Lambda, \theta)}]_{(\Lambda, \theta)}$. This shows that $U^{(\Lambda, \theta)}$ is (Λ, θ)-open. Consequently, we obtain (X, τ) is Λ_θ-extremally disconnected.

Lemma 4.3. Let A be a subset of a topological space (X, τ). If U is (Λ, θ)-open, then $U \cap A^{(\Lambda, \theta)} \subseteq [U \cap A]^{(\Lambda, \theta)}$.

Theorem 4.4. For a topological space (X, τ), the following properties are equivalent:

1. (X, τ) is Λ_θ-extremally disconnected.
2. $U^{(\Lambda, \theta)} \cap V^{(\Lambda, \theta)} = [U \cap V]^{(\Lambda, \theta)}$ for every (Λ, θ)-open sets U and V.
3. $E_{(\Lambda, \theta)} \cup F_{(\Lambda, \theta)} = [E \cup F]^{(\Lambda, \theta)}$ for every (Λ, θ)-closed sets E and F.

Proof. (1) \Rightarrow (2): Let U and V be (Λ, θ)-open sets. Then by (1), we have $U^{(\Lambda, \theta)}$ and $V^{(\Lambda, \theta)}$ are (Λ, θ)-open sets. By Lemma 4.3,

$$U^{(\Lambda, \theta)} \cap V^{(\Lambda, \theta)} \subseteq [U \cap V]^{(\Lambda, \theta)} \subseteq [U \cap V]^{(\Lambda, \theta)} = [U \cap V]^{(\Lambda, \theta)}.$$

Consequently, we obtain $U^{(\Lambda, \theta)} \cap V^{(\Lambda, \theta)} = [U \cap V]^{(\Lambda, \theta)}$.

(2) \Rightarrow (3): Let E and F be (Λ, θ)-closed sets. Then $X - E$ and $X - F$ are (Λ, θ)-open. By (2) and Lemma 3.6, we have

$$E_{(\Lambda, \theta)} \cup F_{(\Lambda, \theta)} = (X - E_{(\Lambda, \theta)} \cup F_{(\Lambda, \theta)}) = (X - (E_{(\Lambda, \theta)} \cup F_{(\Lambda, \theta)})) = (X - X_{(\Lambda, \theta)}^{(\Lambda, \theta)} \cap X_{(\Lambda, \theta)}^{(\Lambda, \theta)}) = X - (X - E_{(\Lambda, \theta)} \cup F_{(\Lambda, \theta)}) = X - (X - E_{(\Lambda, \theta)} \cup F_{(\Lambda, \theta)}) = X - [E \cup F]^{(\Lambda, \theta)} = X - [E \cup F]^{(\Lambda, \theta)}.$$

(3) \Rightarrow (1): The proof is similar to that of (2) \Rightarrow (3).

Theorem 4.5. For a topological space (X, τ), the following properties are equivalent:

1. (X, τ) is Λ_θ-extremally disconnected.
2. $U^{(\Lambda, \theta)} \cap V^{(\Lambda, \theta)} = [U \cap V]^{(\Lambda, \theta)}$ for every (Λ, θ)-open sets U and V.
3. $U^{(\Lambda, \theta)} \cap V^{(\Lambda, \theta)} = \emptyset$ for every (Λ, θ)-open sets U and V such that $U \cap V = \emptyset$.

Proof. This follows from Theorem 4.2 and Theorem 4.4.

Theorem 4.6. For a topological space (X, τ), the following properties are equivalent:

1. (X, τ) is Λ_θ-extremally disconnected.
2. The (Λ, θ)-closure of every $\beta(\Lambda, \theta)$-open set of X is (Λ, θ)-open.
3. The (Λ, θ)-closure of every $\rho(\Lambda, \theta)$-open set of X is (Λ, θ)-open.

Proof. This follows immediately from Proposition 3.26.
Theorem 4.7. For a topological space \((X, r)\), the following properties are equivalent:

1. \((X, r)\) is \(\Lambda_r\)-extremally disconnected.
2. For each \(U \in \beta_{\Lambda_r}O(X, r)\) and each \(V \in s_{\Lambda_r}O(X, r)\) such that \(U \cap V = \emptyset\), \(U^{(\Lambda_r)} \cap V^{(\Lambda_r)} = \emptyset\).
3. For each \(A \in b_{\Lambda_r}O(X, r)\) and each \(B \in s_{\Lambda_r}O(X, r)\) such that \(A \cap B = \emptyset\), \(A^{(\Lambda_r)} \cap B^{(\Lambda_r)} = \emptyset\).
4. For each \(U \in p_{\Lambda_r}O(X, r)\) and each \(V \in s_{\Lambda_r}O(X, r)\) such that \(U \cap V = \emptyset\), \(U^{(\Lambda_r)} \cap V^{(\Lambda_r)} = \emptyset\).
5. For each \(A \in \Lambda_rO(X, r)\) and each \(B \in s_{\Lambda_r}O(X, r)\) such that \(A \cap B = \emptyset\), \(A^{(\Lambda_r)} \cap B^{(\Lambda_r)} = \emptyset\).

Proof. (1) \(\Rightarrow\) (2): Suppose that \(U \in \beta_{\Lambda_r}O(X, r)\) and \(V \in s_{\Lambda_r}O(X, r)\) such that \(U \cap V = \emptyset\). Therefore, we have \(U \cap V^{(\Lambda_r)} = \emptyset\) and by Lemma 3.32, \(U^{(\Lambda_r)} \cap V^{(\Lambda_r)} = \emptyset\). By Theorem 4.6, we obtain \(U^{(\Lambda_r)}\) is \((\Lambda, \theta)\)-open and so

\[
U^{(\Lambda_r)} \cap V^{(\Lambda_r)} = U^{(\Lambda_r)} \cap V^{(\Lambda_r)} = \emptyset
\]

since \(V \in s_{\Lambda_r}O(X, r)\).

(2) \(\Rightarrow\) (3) and (3) \(\Rightarrow\) (4) follows from Remark 3.19.

(4) \(\Rightarrow\) (5): This is obvious since every \((\Lambda, \theta)\)-open set is \(p(\Lambda, \theta)\)-open.

(5) \(\Rightarrow\) (1): This is obvious since every \((\Lambda, \theta)\)-open set is \(s(\Lambda, \theta)\)-open.

Theorem 4.8. For a topological space \((X, r)\), the following properties are equivalent:

1. \((X, r)\) is \(\Lambda_r\)-extremally disconnected.
2. For each \(U \in s_{\Lambda_r}O(X, r)\) and each \(V \in \beta_{\Lambda_r}O(X, r)\), \(U^{(\Lambda_r)} \cap V^{(\Lambda_r)} = [U \cap V]^{(\Lambda_r)}\).

Proof. (1) \(\Rightarrow\) (2): Let \(U \in s_{\Lambda_r}O(X, r)\) and \(V \in \beta_{\Lambda_r}O(X, r)\). By Theorem 4.6 and Lemma 4.3, we have

\[
U^{(\Lambda_r)} \cap V^{(\Lambda_r)} = U^{(\Lambda_r)} \cap V^{(\Lambda_r)} \subseteq [U^{(\Lambda_r)} \cap V^{(\Lambda_r)}]^{(\Lambda_r)} \subseteq [(U \cap V)^{(\Lambda_r)}]^{(\Lambda_r)} = [U \cap V]^{(\Lambda_r)}.
\]

Consequently, we obtain \(U^{(\Lambda_r)} \cap V^{(\Lambda_r)} = [U \cap V]^{(\Lambda_r)}\).

(2) \(\Rightarrow\) (1): This is obvious since every \((\Lambda, \theta)\)-open set is \(s(\Lambda, \theta)\)-open and \(p(\Lambda, \theta)\)-open.

Theorem 4.9. A topological space \((X, r)\) is \(\Lambda_r\)-extremally disconnected if and only if \(r_{\Lambda_r}O(X, r) = r_{\Lambda_r}C(X, r)\).

Proof. Suppose that \((X, r)\) is \(\Lambda_r\)-extremally disconnected. Let \(V \in r_{\Lambda_r}O(X, r)\). Then, we have \(V = [V^{(\Lambda_r)}]^{(\Lambda_r)}\). Since \((X, r)\) is \(\Lambda_r\)-extremally disconnected,

\[
[V^{(\Lambda_r)}]^{(\Lambda_r)} = [V^{(\Lambda_r)}]^{(\Lambda_r)}_{\Lambda_r} = [[[V^{(\Lambda_r)}]^{(\Lambda_r)}]^{(\Lambda_r)}_{\Lambda_r}]^{(\Lambda_r)} = [V^{(\Lambda_r)}]^{(\Lambda_r)}_{\Lambda_r} = V
\]

and so \(V \in r_{\Lambda_r}C(X, r)\). Therefore, we obtain \(r_{\Lambda_r}O(X, r) \subseteq r_{\Lambda_r}C(X, r)\). On the other hand, let \(V \in r_{\Lambda_r}C(X, r)\). Then, we have \(V = [V^{(\Lambda_r)}]^{(\Lambda_r)}\). Since \((X, r)\) is \(\Lambda_r\)-extremally disconnected,

\[
[V^{(\Lambda_r)}]^{(\Lambda_r)} = [V^{(\Lambda_r)}]^{(\Lambda_r)}_{\Lambda_r} = [[[V^{(\Lambda_r)}]^{(\Lambda_r)}]^{(\Lambda_r)}_{\Lambda_r}]^{(\Lambda_r)} = [V^{(\Lambda_r)}]^{(\Lambda_r)}_{\Lambda_r} = V
\]

and hence, \(V \in r_{\Lambda_r}O(X, r)\). Therefore, \(r_{\Lambda_r}O(X, r) \subseteq r_{\Lambda_r}C(X, r)\). Consequently, we obtain \(r_{\Lambda_r}O(X, r) = r_{\Lambda_r}C(X, r)\).

Conversely, suppose that \(r_{\Lambda_r}O(X, r) = r_{\Lambda_r}C(X, r)\). Let \(V\) be any \((\Lambda, \theta)\)-open set. Then, we have \([V^{(\Lambda_r)}]^{(\Lambda_r)} \in r_{\Lambda_r}C(X, r)\) and so \([V^{(\Lambda_r)}]^{(\Lambda_r)} \in r_{\Lambda_r}O(X, r)\). Therefore, we obtain

\[
[V^{(\Lambda_r)}]^{(\Lambda_r)} = [V^{(\Lambda_r)}]^{(\Lambda_r)}_{\Lambda_r} = [[[V^{(\Lambda_r)}]^{(\Lambda_r)}]^{(\Lambda_r)}_{\Lambda_r}]^{(\Lambda_r)} = [V^{(\Lambda_r)}]^{(\Lambda_r)}_{\Lambda_r} = V^{(\Lambda_r)}.
\]

This shows that \(V^{(\Lambda_r)}\) is a \((\Lambda, \theta)\)-open set. Hence, \((X, r)\) is \(\Lambda_r\)-extremally disconnected.

Theorem 4.10. For a topological space \((X, r)\), the following properties are equivalent:

1. \((X, r)\) is \(\Lambda_r\)-extremally disconnected.
(2) For each $U \in s\Lambda\omega(O(X, r), U^{(\Lambda, \theta)} \in \Lambda\omega(O(X, r))$.

(3) For each $U, V \in s\Lambda\omega(O(X, r))$, $|U \cap V^{(\Lambda, \theta)} = U^{(\Lambda, \theta)} \cap V^{(\Lambda, \theta)}$.

(4) For each $U, V \in \Lambda\omega(O(X, r))$, $|U \cap V^{(\Lambda, \theta)} = U^{(\Lambda, \theta)} \cap V^{(\Lambda, \theta)}$.

Proof. (1) \Rightarrow (2): Let $U \in s\Lambda\omega(O(X, r))$. Then, we have $U \subseteq |U^{(\Lambda, \theta)}$. Since (X, r) is $\Lambda\omega$-extremely disconnected,

$$U^{(\Lambda, \theta)} \subseteq |U^{(\Lambda, \theta)}|^{(\Lambda, \theta)} = \|U^{(\Lambda, \theta)}\|^{(\Lambda, \theta)} \subseteq \|U^{(\Lambda, \theta)}\|.$$

Consequently, we obtain $U^{(\Lambda, \theta)} \in \Lambda\omega(O(X, r))$.

(2) \Rightarrow (3): Let $U, V \in s\Lambda\omega(O(X, r))$. By (2), we have $U^{(\Lambda, \theta)}, V^{(\Lambda, \theta)} \in \Lambda\omega(O(X, r))$ and hence,

$$U^{(\Lambda, \theta)} \cap V^{(\Lambda, \theta)} = [U^{(\Lambda, \theta)} \cap V^{(\Lambda, \theta)}]^{(\Lambda, \theta)} \subseteq \|U^{(\Lambda, \theta)} \cap V^{(\Lambda, \theta)}\|^{(\Lambda, \theta)} \subseteq \|U^{(\Lambda, \theta)} \cap V^{(\Lambda, \theta)}\|^{(\Lambda, \theta)}\cap V^{(\Lambda, \theta)}\|^{(\Lambda, \theta)} = \|U^{(\Lambda, \theta)} \cap V^{(\Lambda, \theta)}\|^{(\Lambda, \theta)} \subseteq \|U^{(\Lambda, \theta)} \cap V^{(\Lambda, \theta)}\|^{(\Lambda, \theta)} \subseteq \|U^{(\Lambda, \theta)} \cap V^{(\Lambda, \theta)}\|^{(\Lambda, \theta)}.$$

Therefore, we obtain $|U \cap V^{(\Lambda, \theta)} = U^{(\Lambda, \theta)} \cap V^{(\Lambda, \theta)}$.

(3) \Rightarrow (4): This is obvious since every (Λ, θ)-open set is $s(\Lambda, \theta)$-open.

(4) \Rightarrow (1): The proof is obvious from Theorem 4.4.

Theorem 4.11. For a topological space (X, r), the following properties are equivalent:

(1) (X, r) is $\Lambda\omega$-extremely disconnected.

(2) For each $V \in \beta\Lambda\omega(O(X, r)), V^{(\Lambda, \theta)} \in r\Lambda\omega(O(X, r))$.

(3) For each $V \in b\Lambda\omega(O(X, r)), V^{(\Lambda, \theta)} \in r\Lambda\omega(O(X, r))$.

(4) For each $V \in s\Lambda\omega(O(X, r)), V^{(\Lambda, \theta)} \in r\Lambda\omega(O(X, r))$.

(5) For each $V \in a\Lambda\omega(O(X, r)), V^{(\Lambda, \theta)} \in r\Lambda\omega(O(X, r))$.

(6) For each $V \in \Lambda\omega(O(X, r)), V^{(\Lambda, \theta)} \in r\Lambda\omega(O(X, r))$.

(7) For each $V \in r\Lambda\omega(O(X, r)), V^{(\Lambda, \theta)} \in r\Lambda\omega(O(X, r))$.

(8) For each $V \in p\Lambda\omega(O(X, r)), V^{(\Lambda, \theta)} \in r\Lambda\omega(O(X, r))$.

Proof. (1) \Rightarrow (2): Suppose that $V \in \beta\Lambda\omega(O(X, r))$. By (1) and Theorem 4.6, we have $V^{(\Lambda, \theta)} = |V^{(\Lambda, \theta)}|$ and so

$$V^{(\Lambda, \theta)} = |V^{(\Lambda, \theta)}| = |V^{(\Lambda, \theta)}|^{(\Lambda, \theta)}.$$

Consequently, we obtain $V^{(\Lambda, \theta)} \in r\Lambda\omega(O(X, r))$.

(2) \Rightarrow (3) and (3) \Rightarrow (4) follows from Remark 3.19.

(4) \Rightarrow (5) and (5) \Rightarrow (6) follows from Proposition 3.3(1).

(6) \Rightarrow (7): This is obvious since every $r(\Lambda, \theta)$-open set is (Λ, θ)-open.

(7) \Rightarrow (8): Let $V \in p\Lambda\omega(O(X, r))$. Then $V^{(\Lambda, \theta)} = |V^{(\Lambda, \theta)}|$ is $r(\Lambda, \theta)$-open. By (7), $|V^{(\Lambda, \theta)}|$ is $r(\Lambda, \theta)$-open and so

$$|V^{(\Lambda, \theta)}|^{(\Lambda, \theta)} = |V^{(\Lambda, \theta)}|^{(\Lambda, \theta)}.$$

Since every $p(\Lambda, \theta)$-open set is $\beta(\Lambda, \theta)$-open. By Proposition 3.8 and Proposition 3.26, we have $V^{(\Lambda, \theta)} = |V^{(\Lambda, \theta)}|$ and hence, $V^{(\Lambda, \theta)} \in r\Lambda\omega(O(X, r))$.

(8) \Rightarrow (1): Let V be a (Λ, θ)-open set. Then V is $p(\Lambda, \theta)$-open. By (8), $V^{(\Lambda, \theta)} \in r\Lambda\omega(O(X, r))$ and hence, $V^{(\Lambda, \theta)} \in \Lambda\omega(O(X, r))$. This shows that (X, r) is $\Lambda\omega$-extremely disconnected.

Theorem 4.12. For a topological space (X, r), the following properties are equivalent:

(1) (X, r) is $\Lambda\omega$-extremely disconnected.
\[(2) \ r\Lambda_\omega C(X, r) \subseteq \Lambda_\omega O(X, r). \]
\[(3) \ r\Lambda_\omega C(X, r) \subseteq \alpha\Lambda_\omega O(X, r). \]
\[(4) \ r\Lambda_\omega C(X, r) \subseteq \beta\Lambda_\omega O(X, r). \]
\[(5) \ s\Lambda_\omega O(X, r) \subseteq \alpha\Lambda_\omega O(X, r). \]
\[(6) \ s\Lambda_\omega C(X, r) \subseteq \alpha\Lambda_\omega C(X, r). \]
\[(7) \ s\Lambda_\omega C(X, r) \subseteq \beta\Lambda_\omega C(X, r). \]
\[(8) \ s\Lambda_\omega O(X, r) \subseteq \beta\Lambda_\omega O(X, r). \]
\[(9) \ \beta\Lambda_\omega O(X, r) \subseteq \beta\Lambda_\omega O(X, r). \]
\[(10) \ \beta\Lambda_\omega C(X, r) \subseteq \beta\Lambda_\omega C(X, r). \]
\[(11) \ \beta\Lambda_\omega C(X, r) \subseteq \beta\Lambda_\omega C(X, r). \]
\[(12) \ \beta\Lambda_\omega O(X, r) \subseteq \beta\Lambda_\omega O(X, r). \]
\[(13) \ r\Lambda_\omega O(X, r) \subseteq \beta\Lambda_\omega C(X, r). \]
\[(14) \ r\Lambda_\omega O(X, r) \subseteq \beta\Lambda_\omega C(X, r). \]
\[(15) \ r\Lambda_\omega O(X, r) \subseteq \beta\Lambda_\omega O(X, r). \]

Proof. \(1 \Rightarrow 2\): Let \(A \in r\Lambda_\omega C(X, r) \). Then, we have \(A = [A_{(\Lambda, \theta)}]_{(A, \theta)} \) and by \(1\),
\(A = [A_{(\Lambda, \theta)}]_{(A, \theta)} = [A_{(\Lambda, \theta)}]_{(A, \theta)} = A_{(\Lambda, \theta)} \). Therefore, \(A \in \Lambda_\omega O(X, r) \). Consequently, we obtain \(r\Lambda_\omega C(X, r) \subseteq \Lambda_\omega O(X, r) \).

\(2 \Rightarrow 3\): Follows from Proposition 3.3.1.

\(3 \Rightarrow 4\): Follows from Proposition 3.3.2.

\(4 \Rightarrow 5\): Let \(A \in s\Lambda_\omega O(X, r) \). Then \(A \subseteq [A_{(\Lambda, \theta)}]_{(A, \theta)} \). Since \([A_{(\Lambda, \theta)}]_{(A, \theta)} \) is a \(r(\Lambda, \theta) \)-closed set. By \(4\),
\([A_{(\Lambda, \theta)}]_{(A, \theta)} \) is \(p(\Lambda, \theta) \)-open and hence,
\([A_{(\Lambda, \theta)}]_{(A, \theta)} \subseteq [A_{(\Lambda, \theta)}]_{(A, \theta)} \). Hence, \(A \subseteq [A_{(\Lambda, \theta)}]_{(A, \theta)} \). Therefore, \(A \subseteq \alpha\Lambda_\omega O(X, r) \). This shows that \(s\Lambda_\omega O(X, r) \subseteq \alpha\Lambda_\omega O(X, r) \).

\(5 \Rightarrow 6\): Let \(A \in s\Lambda_\omega C(X, r) \). Then, we have \(X - A \in s\Lambda_\omega O(X, r) \). By \(5\), \(X - A \in \alpha\Lambda_\omega O(X, r) \) and so \(A \in \alpha\Lambda_\omega C(X, r) \). Therefore, we obtain \(s\Lambda_\omega C(X, r) \subseteq \alpha\Lambda_\omega C(X, r) \).

\(6 \Rightarrow 7\): This is obvious since every \(p(\Lambda, \theta) \)-closed set is \(a(\Lambda, \theta) \)-closed.

\(7 \Rightarrow 8\): The proof is similar to that of \(5 \Rightarrow 6 \).

\(8 \Rightarrow 9\): Let \(A \in \beta\Lambda_\omega O(X, r) \). By Proposition 3.26.4, \(A_{(\Lambda, \theta)} \) is \(s(\Lambda, \theta) \)-open and by \(8\), \(A_{(\Lambda, \theta)} \) is \(p(\Lambda, \theta) \)-open. Therefore, we have
\(A_{(\Lambda, \theta)} \subseteq [A_{(\Lambda, \theta)}]_{(A, \theta)} \).

and so \(A \subseteq [A_{(\Lambda, \theta)}]_{(A, \theta)} \). Hence, \(A \in p\Lambda_\omega O(X, r) \). Consequently, we obtain \(\beta\Lambda_\omega O(X, r) \subseteq p\Lambda_\omega O(X, r) \).

\(9 \Rightarrow 10\): The proof is similar to that of \(5 \Rightarrow 6 \).

\(10 \Rightarrow 11\): This is obvious since every \(b(\Lambda, \theta) \)-closed set is \(\beta(\Lambda, \theta) \)-closed.

\(11 \Rightarrow 12\): The proof is similar to that of \(5 \Rightarrow 6 \).

\(12 \Rightarrow 13\): Let \(A \in \beta\Lambda_\omega O(X, r) \). Then \(A \) is a \(\beta(\Lambda, \theta) \)-open set. By Proposition 3.26.5, \(A_{(\Lambda, \theta)} \) is a \(b(\Lambda, \theta) \)-open set. Then by \(12\), \(A_{(\Lambda, \theta)} \) is \(p(\Lambda, \theta) \)-open. So \(A_{(\Lambda, \theta)} = [A_{(\Lambda, \theta)}]_{(A, \theta)} = [A_{(\Lambda, \theta)}]_{(A, \theta)} = A \) and hence, \(A \) is \((\Lambda, \theta) \)-open. This implies that \(A \) is \(p(\Lambda, \theta) \)-closed. Therefore, \(A \in p\Lambda_\omega C(X, r) \). Hence, \(\beta\Lambda_\omega O(X, r) \subseteq \beta\Lambda_\omega C(X, r) \).
(13) \(\Rightarrow \) (14): Let \(A \in r\Lambda\Omega(X, r) \). Then by (13), \(A \) is a \((\Lambda, \theta)\)-open. So \(A_{(\Lambda, \theta)} \subseteq A \). Since \(A \) is \((\Lambda, \theta)\)-open, \(A_{(\Lambda, \theta)} \subseteq A \) and hence \(A_{(\Lambda, \theta)} = A \). This means that \(A \) is \((\Lambda, \theta)\)-closed. Therefore, \(A \in \Lambda\Omega(X, r) \). Hence, \(r\Lambda\Omega(X, r) \subseteq \Lambda\Omega(X, r) \).

(14) \(\Rightarrow \) (15): This is obvious since every \((\Lambda, \theta)\)-closed set is \((\Lambda, \theta)\)-open.

(15) \(\Rightarrow \) (1): Let \(V \) be a \((\Lambda, \theta)\)-open set. Then, we have \([V_{(\Lambda, \theta)}]_{(\Lambda, \theta)} = r(\Lambda, \theta) \)-open. By (15), \([V_{(\Lambda, \theta)}]_{(\Lambda, \theta)} \) is \((\Lambda, \theta)\)-open and so

\[
[[V_{(\Lambda, \theta)}]_{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq [V_{(\Lambda, \theta)}]_{(\Lambda, \theta)}.
\]

By Proposition 3.8, we have \(V_{(\Lambda, \theta)} \subseteq [V_{(\Lambda, \theta)}]_{(\Lambda, \theta)} \) and hence, \(V_{(\Lambda, \theta)} = [V_{(\Lambda, \theta)}]_{(\Lambda, \theta)} \). This shows that \(V_{(\Lambda, \theta)} \) is \((\Lambda, \theta)\)-open. Consequently, we obtain \((X, r)\) is \(\Lambda_\theta\)-extremally disconnected.

5. Characterizations of \(\Lambda_\theta\)-hyperconnected spaces

In this section, we introduce the notion of \(\Lambda_\theta\)-hyperconnected spaces and investigate some characterizations of \(\Lambda_\theta\)-hyperconnected spaces.

Definition 5.1. A topological space \((X, r)\) is called \(\Lambda_\theta\)-hyperconnected if every non-empty \((\Lambda, \theta)\)-open set is \(\Lambda_\theta\)-dense.

Definition 5.2. A subset \(N\) of a topological space \((X, r)\) is said to be \(\Lambda_\theta\)-nowhere dense if \(N_{(\Lambda, \theta)} = \emptyset\).

Theorem 5.3. For a topological space \((X, r)\), the following properties are equivalent:

1. \((X, r)\) is \(\Lambda_\theta\)-hyperconnected.
2. \(A\) is \(\Lambda_\theta\)-dense or \(\Lambda_\theta\)-nowhere dense for every subset \(A\) of \(X\).
3. \(U \cap V \neq \emptyset\) for every non-empty \((\Lambda, \theta)\)-open sets \(U\) and \(V\) of \(X\).
4. \(U \cap V \neq \emptyset\) for every non-empty \((\Lambda, \theta)\)-open sets \(U\) and \(V\) of \(X\).

Proof. (1) \(\Rightarrow \) (2): Suppose that \(A\) is not \(\Lambda_\theta\)-nowhere dense. Then, we have \(A_{(\Lambda, \theta)} \neq \emptyset\) and by (1), \([A_{(\Lambda, \theta)}]_{(\Lambda, \theta)} = X\). Since \(X = [A_{(\Lambda, \theta)}]_{(\Lambda, \theta)} \subseteq A_{(\Lambda, \theta)}\), we obtain \(A_{(\Lambda, \theta)} = X\). Therefore, \(A\) is \(\Lambda_\theta\)-dense.

(2) \(\Rightarrow \) (3): Suppose that \(U \cap V = \emptyset\) for some non-empty \((\Lambda, \theta)\)-open sets \(U\) and \(V\) of \(X\). This implies that \(U_{(\Lambda, \theta)} \cap V_{(\Lambda, \theta)} = \emptyset\) and so \(U\) is not \(\Lambda_\theta\)-dense. Moreover, since \(U_{(\Lambda, \theta)}\) is \((\Lambda, \theta)\)-open, \(\emptyset \neq U \subseteq U_{(\Lambda, \theta)}\) and so \(U\) is not \(\Lambda_\theta\)-nowhere dense. This is a contradiction. Therefore, \(U \cap V \neq \emptyset\) for every non-empty \((\Lambda, \theta)\)-open sets \(U\) and \(V\) of \(X\).

(3) \(\Rightarrow \) (4): Suppose that \(U \cap V = \emptyset\) for some non-empty \((\Lambda, \theta)\)-open sets \(U\) and \(V\) of \(X\). By Proposition 3.35, there exist \(M, N \in \Lambda\Omega(X, r)\) such that \(M \subseteq U \subseteq M_{(\Lambda, \theta)}\) and \(N \subseteq V \subseteq N_{(\Lambda, \theta)}\). Since \(U\) and \(V\) are non-empty, \(M\) and \(N\) are non-empty. Moreover, we have \(M \cup N \subseteq U \cap V = \emptyset\). This is a contradiction. Hence, \(U \cap V \neq \emptyset\) for every non-empty \((\Lambda, \theta)\)-open sets \(U\) and \(V\) of \(X\).

(4) \(\Rightarrow \) (1): Suppose that \((X, r)\) is not \(\Lambda_\theta\)-hyperconnected. Then, there exists a non-empty \((\Lambda, \theta)\)-open set \(S\) such that \(S_{(\Lambda, \theta)} \neq \emptyset\) and so \(S_{(\Lambda, \theta)} = S\). This implies that \(S_{(\Lambda, \theta)} = S\) and \(V\) are non-empty \((\Lambda, \theta)\)-open sets such that \(X - V_{(\Lambda, \theta)} \cap V = \emptyset\). This is a contradiction. Consequently, we obtain \((X, r)\) is \(\Lambda_\theta\)-hyperconnected.

Corollary 5.4. For a topological space \((X, r)\), the following properties are equivalent:

1. \((X, r)\) is \(\Lambda_\theta\)-hyperconnected.
2. \(U \cap V \neq \emptyset\) for every non-empty \((\Lambda, \theta)\)-open set \(U\) and every non-empty \((\Lambda, \theta)\)-open set \(V\) of \(X\).
3. \(U \cap V \neq \emptyset\) for every non-empty \((\Lambda, \theta)\)-open set \(U\) and every non-empty \((\Lambda, \theta)\)-open set \(V\) of \(X\).

Proof. The proof is obvious and follows from Theorem 5.3.
Theorem 5.5. For a topological space \((X, \tau)\), the following properties are equivalent:

1. \((X, \tau)\) is \(\Lambda_\theta\)-hyperconnected.
2. \(V\) is \(\Lambda_\theta\)-dense for every non-empty set \(V \in \beta\Lambda_\theta O(X, \tau)\).
3. \(V \cup [V(\Lambda, \theta)|_{\Lambda, \theta}] = X\) for every non-empty set \(V \in \beta\Lambda_\theta O(X, \tau)\).
4. \(V \cup [V(\Lambda, \theta)|_{\Lambda, \theta}] = X\) for every non-empty set \(V \in s\Lambda_\theta O(X, \tau)\).
5. \(V \cup [V(\Lambda, \theta)|_{\Lambda, \theta}] = X\) for every non-empty set \(V \in s\Lambda_\theta O(X, \tau)\).

Proof. (1) \(\Rightarrow\) (2): Let \(V\) be any non-empty \(\beta(\Lambda, \theta)\)-open set. Then, we have \([V(\Lambda, \theta)|_{\Lambda, \theta}] \neq \emptyset\) and hence, \(V(\Lambda, \theta)|_{\Lambda, \theta} = X\).

(2) \(\Rightarrow\) (3): Let \(V\) be any non-empty \(\beta(\Lambda, \theta)\)-open set. By (2), \(V(\Lambda, \theta) = X\) and so \(V \cup [V(\Lambda, \theta)|_{\Lambda, \theta}] = V \cup X(\Lambda, \theta) = V \cup X = X\).

(3) \(\Rightarrow\) (4): Let \(V\) be any non-empty \(s(\Lambda, \theta)\)-open set. Then, we obtain \(V(\Lambda, \theta) = [V(\Lambda, \theta)|_{\Lambda, \theta}]\). By (3), \(X = V \cup [V(\Lambda, \theta)|_{\Lambda, \theta}] = V \cup [V(\Lambda, \theta)|_{\Lambda, \theta}]\).

(4) \(\Rightarrow\) (5): Let \(V\) be any non-empty \(s(\Lambda, \theta)\)-open set. By (4), we have \(X = V \cup [V(\Lambda, \theta)|_{\Lambda, \theta}] \subseteq V \cup [V(\Lambda, \theta)|_{\Lambda, \theta}]\).

Consequently, we obtain \(V \cup [V(\Lambda, \theta)|_{\Lambda, \theta}] = X\).

(5) \(\Rightarrow\) (1): Let \(V\) be any non-empty \((\Lambda, \theta)\)-open set. Then \(V\) is \(s(\Lambda, \theta)\)-open. By (5), \(V \cup [V(\Lambda, \theta)|_{\Lambda, \theta}] = X\) and so \(V(\Lambda, \theta) = X\). Hence, \((X, \tau)\) is \(\Lambda_\theta\)-hyperconnected.

Theorem 5.6. For a topological space \((X, \tau)\), the following properties are equivalent:

1. \((X, \tau)\) is \(\Lambda_\theta\)-hyperconnected.
2. \(V\) is \(\Lambda_\theta\)-dense for every non-empty set \(V \in p\Lambda_\theta O(X, \tau)\).
3. \(V \cup [V(\Lambda, \theta)|_{\Lambda, \theta}] = X\) for every non-empty set \(V \in p\Lambda_\theta O(X, \tau)\).
4. \(V \cup [V(\Lambda, \theta)|_{\Lambda, \theta}] = X\) for every non-empty set \(V \in s\Lambda_\theta O(X, \tau)\).

Proof. It is similar to that of Theorem 5.5.

Theorem 5.7. For a topological space \((X, \tau)\), the following properties are equivalent:

1. \((X, \tau)\) is \(\Lambda_\theta\)-hyperconnected.
2. \(V\) is \(\Lambda_\theta\)-dense for every non-empty set \(V \in s\Lambda_\theta O(X, \tau)\).
3. \(V \cup [V(\Lambda, \theta)|_{\Lambda, \theta}] = X\) for every non-empty set \(V \in s\Lambda_\theta O(X, \tau)\).

Proof. It is similar to that of Theorem 5.5.

© 2018 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

No additional restrictions

You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Mathematics & Statistics (ISSN: 2376-6123) is published by Cogent OA, part of Taylor & Francis Group.

Publishing with Cogent OA ensures:

- Immediate, universal access to your article on publication
- High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online
- Download and citation statistics for your article
- Rapid online publication
- Input from, and dialog with, expert editors and editorial boards
- Retention of full copyright of your article
- Guaranteed legacy preservation of your article
- Discounts and waivers for authors in developing regions

Submit your manuscript to a Cogent OA journal at www.CogentOA.com