On generalizations of classical primary submodules over commutative rings

P. Yiarayong* and M. Siripitukdet

Abstract: Let $\phi: S(M) \to S(M) \cup \{\emptyset\}$ be a function where $S(M)$ is the set of all submodules of R-module M. A proper submodule N of M is called a ϕ-classical primary submodule, if for each $m \in M$ and $a, b \in R$ with $abm \in N - \phi(N)$, then $am \in N$ or $b'm \in N$ for some positive integer n. Some characterizations of classical primary and ϕ-classical primary submodules are obtained. It is shown that N is a ϕ-classical primary submodule of M if and only if for every $m \in M - N$, $(N;m)$ is a ϕ-primary ideal of R where $(\phi(N);m) = \phi(N;m)$. Moreover, we investigate relationships between classical primary, ϕ-classical primary and ϕ-primary submodules of modules over commutative rings. Finally, we obtain necessary and sufficient conditions of a ϕ-classical primary submodule in order to be a ϕ-primary submodule.

Keywords: classical primary submodule; ϕ-classical primary submodule; ϕ-primary submodule; ϕ-primary ideal

1. Introduction

Throughout this paper, we assume that all rings are commutative with $1 \neq 0$. Let R be a commutative ring and M be an R-module. We will denote by $(N:M)$ the residual of N by M, that is, the set of all $r \in R$ such that $rM \subseteq N$. Let I be a proper ideal of R. Then $\sqrt{I} = \{r \in R^{+n} \mid r \in I\}$ for some positive integer n denotes the radical ideal of R. A proper ideal I of R is called a weakly primary ideal if whenever $0 = ab \in I$ for $a, b \in R$, then $a \in I$ or $b \in \sqrt{I}$. The notion of weakly primary ideals has been introduced and studied by Atani and Foruzan (2005). Anderson and Badawi (2011) generalized the concept of 2-absorbing ideals to n-absorbing ideals. According to their definition, a proper ideal I of R is said to be an n-absorbing ideal of R if whenever $a, a_2, ... a_{n+1} \in I$ for $a, a_2, ... a_{n+1} \in R$, then there are n of the a_i’s whose product is in I. Later, Badawi, Tekir, and Yetkin (2015) generalized the concept of weakly primary ideals to weakly 2-absorbing primary ideals. According to their definition, a proper ideal I of R is said to be a weakly 2-absorbing primary ideal of R if whenever $0 = abc \in I$ for $a, b, c \in R$, then $ab \in I$.
or \(ac \in \sqrt{I} \) or \(bc \in \sqrt{I} \). Clearly, every weakly primary ideal is a weakly 2-absorbing primary ideal. Also, Tekir, Koc, and Oral (2016) generalized the concept of quasi-primary ideals to 2-absorbing quasi-primary ideals. According to their definition, a proper ideal \(I \) of \(R \) is said to be a 2-absorbing quasi-primary ideal of \(R \) if \(\sqrt{I} \) is a 2-absorbing ideal of \(R \). Thus, a 2-absorbing quasi-primary ideal is quasi-primary.

Let \(\varphi : I(R) \to I(R) \cup \{ \emptyset \} \) be a function where \(I(R) \) is a set of ideals of \(R \). A proper ideal \(I \) of \(R \) is called a \(\varphi \)-prime ideal of \(R \) as in Anderson and Bataineh (2008) if whenever \(ab \in I - \varphi(I) \) for \(a, b \in R \), then \(a \in I \) or \(b \in I \). Darani (2012) generalized the concept of primary and weakly primary ideals to \(\varphi \)-primary ideals. A proper ideal \(I \) of \(R \) is said to be a \(\varphi \)-primary ideal of \(R \) if whenever \(ab \in I - \varphi(I) \) for \(a, b \in R \), then \(a \in I \) or \(b \in \sqrt{I} \). Clearly, every \(\varphi \)-prime ideal is a \(\varphi \)-primary ideal. Later, Badawi, Tekir, Ugurlu, Ulucak, and Celikel (2016) generalized the concept of 2-absorbing primary ideals to \(\varphi \)-primary ideals. According to their definition, a proper ideal \(I \) of \(R \) is said to be a \(\varphi \)-2-absorbing primary ideal if \(\sqrt{I} \) is a \(\varphi \)-primary ideal of \(R \) whenever \(abc \in I - \varphi(I) \) for \(a, b, c \in R \), then \(ab \in I \) or \(ac \in \sqrt{I} \) or \(bc \in \sqrt{I} \). Thus, a \(\varphi \)-primary ideal is \(\varphi \)-2-absorbing primary.

In 2004, Behboodi introduced the concepts of a classical prime submodule. A proper submodule \(N \) of an \(R \)-module \(M \) is said to be a classical prime submodule of \(M \) if whenever \(abm \in N \) for \(a, b \in R \), then \(am \in N \) or \(bm \in N \). (see also Azizi, 2006; Azizi, 2008; Behboodi, 2006, in which, the notion of classical prime submodules is named “weakly prime submodules”). For more information on classical prime submodules, the reader is referred to (Arabi-Kakavand & Behboodi, 2014; Behboodi, 2007; Behboodi & Shojaae, 2010; Yılmaz & Cansu, 2014). Later, Baziar and Behboodi (2009) introduced the concepts of a classical primary submodule. According to their definition, a proper submodule \(N \) of \(M \) is said to be a classical primary submodule of \(M \) if whenever \(abm \in N \) for \(a, b \in R \), \(m \in M \), then \(am \in N \) or \(bm \in N \) for some positive integer \(n \). Clearly, every classical prime submodule is a classical primary. Also, Behboodi, Jahani-Nezhad, and Naderi (2011) introduced the concepts of a classical quasi-primary submodule. According to their definition, a proper submodule \(N \) of \(M \) is said to be a classical quasi-primary submodule of \(M \) if whenever \(abm \in N \) for \(a, b \in R \), \(m \in M \), then \(am \in N \) or \(bm \in N \) for some positive integer \(n \). Thus, a classical primary submodule is classical quasi-primary. The notion of weakly classical primary submodules has been introduced and studied by Mostafanasab (2015). A proper submodule \(N \) of an \(R \)-module \(M \) is said to be a weakly classical primary submodule of \(M \) if whenever \(0 \neq abm \in N \) for \(a, b \in R \), \(m \in M \), then \(am \in N \) or \(bm \in N \) for some positive integer \(n \). Mostafanasab, Tekir, and Oral (2016) introduced the concepts of a weakly classical prime submodule. According to their definition, a proper submodule \(N \) of \(M \) is said to be a weakly classical prime submodule of \(M \) if whenever \(0 \neq abm \in N \) for \(a, b \in R \), \(m \in M \), then \(am \in N \) or \(bm \in N \).

Zamani (2010), generalized the concept of prime and weakly prime submodules to \(\varphi \)-prime submodules. Let \(\varphi : S(M) \to S(M) \cup \{ \emptyset \} \) be a function where \(S(M) \) is the set of all submodules of \(M \). Recall that a proper submodule \(N \) of \(M \) is called a \(\varphi \)-prime submodule of \(M \) as in Zamani (2010) if whenever \(am \in N - \varphi(N) \) for \(a \in R \), \(m \in M \), then \(am \in N \) or \(a \in \varphi(N) \). Also, Ebrahimpour and Mirzaee in (2017), generalized the concept of semiprime and weakly semiprime submodules to \(\varphi \)-semiprime submodules. According to their definition, a proper submodule \(N \) of \(M \) is said to be a \(\varphi \)-semiprime submodule of \(M \) if whenever \(a^2 \in N - \varphi(N) \) for \(a \in R \), \(m \in M \), then \(am \in N \).

Motivated and inspired by the above works, the purposes of this paper are to introduce generalizations of classical primary submodule to the context of \(\varphi \)-classical primary submodule. A proper submodule \(N \) of \(M \) is said to be a \(\varphi \)-classical primary submodule of \(M \) if whenever \(abm \in N - \varphi(N) \) for \(a, b \in R \), \(m \in M \), then \(am \in N \) or \(bm \in N \) for some positive integer \(n \). Some characterizations of classical primary and \(\varphi \)-classical primary submodules are obtained. We show that \(N \) is a \(\varphi \)-classical primary submodule of \(M \) if and only if for every \(m \in M - N \), \((N:m) \) is a \(\varphi \)-prime ideal of \(R \) with \(\varphi(N:m) = \varphi(N:N:m) \). Moreover, we investigate relationships between classical primary, \(\varphi \)-classical primary and \(\varphi \)-primary submodules of modules over commutative rings. Finally, we obtain necessary and sufficient conditions of a \(\varphi \)-classical primary submodule in order to be a \(\varphi \)-primary submodule.
2. Some basic properties of \(\varphi \)-classical primary submodules

The results of the following theorems seem to play an important role to study \(\varphi \)-classical primary submodules of modules over commutative rings; these facts will be used frequently and normally, we shall make no reference to this definition.

\textbf{Definition 2.1.} Let \(M \) be an \(R \)-module and let \(\varphi: S(M) \to S(M) \cup \{0\} \) be a function where \(S(M) \) be a set of all submodules of \(M \). A proper submodule \(N \) of \(M \) is called a \(\varphi \)-classical primary submodule, if for each \(m \in M \), \(a, b \in R \) with \(abm \in N - \varphi(N) \), then \(am \in N \) or \(b'm \in N \) for some positive integer \(n \).

\textbf{Remark 2.2.} It is easy to see that every classical primary submodule is \(\varphi \)-classical primary.

The following example shows that the converse of Remark 2.2 is not true.

\textbf{Example 2.3.} Let \(R = \mathbb{Z} \) and \(M = \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z} \). Clearly, \(M \) is an \(R \)-module. Consider the submodule \(N = \{(0), (1, 0, 0)\} \) of an \(R \)-module \(M \). Define \(\varphi: S(M) \to S(M) \cup \{0\} \) by \(\varphi(K) = \{(0), (1, 0, 0)\} \) for every submodule \(K \) of \(M \). It is easy to see that \(N \) is a \(\varphi \)-classical primary submodule of \(M \). Notice that \(2 \cdot 3(1, 1, 0) \notin \{(0), (1, 0, 0)\} \), but \(2(1, 1, 0) \notin \{(0), (1, 0, 0)\} \).

Throughout the rest of this paper, \(M \) is an \(R \)-module and \(\varphi: S(M) \to S(M) \cup \{0\} \) are functions. Since \(N - \varphi(N) = N - (N \cap \varphi(N)) \) and \(I - \varphi(I) = I - (I \cap \varphi(I)) \) for \(N \in S(M) \), \(I \in I(R) \), without loss of generality, we will assume that \(\varphi(N) \subseteq N \) and \(\varphi(I) \subseteq I \).

\textbf{Theorem 2.4.} Let \(M \) be an \(R \)-module. Then, the following statements hold:

1. If \(N \) is a \(\varphi \)-classical primary submodule of \(M \), then \((N:m) \) is a \(\varphi \)-primary ideal of \(R \) for every \(m \in M - N \) with \((\varphi(N):m) \subseteq \varphi(N:m) \).
2. If \(\varphi(N:m) \subseteq (\varphi(N):m) \) and \((N:m) \) is a \(\varphi \)-primary ideal of \(R \) for every \(m \in M - N \), then \(N \) is a \(\varphi \)-classical primary submodule of \(M \).

\textbf{Proof.} Let \(a, b \in R \) such that \(ab \in (N:m) - \varphi(N:m) \). Then \(abm \in N \) and \(ab \notin \varphi(N:m) \). Since \((\varphi(N):m) \subseteq \varphi(N:m) \), we have \(ab \notin (\varphi(N):m) \). Clearly, \(am \in N - \varphi(N) \). By assumption, \(am \in N \) or \(b'm \in N \) for some positive integer \(n \). Therefore, \(a \in (N:m) \) or \(b' \in (N:m) \) for some positive integer \(n \). Hence, \((N:m) \) is a \(\varphi \)-primary ideal of \(R \).

2. Let \(a, b \in R \) and \(m \in M - N \) such that \(abm \in N - \varphi(N) \). Then \(ab \in (N:m) \) and \(ab \notin \varphi(N:m) \). Since \(\varphi(N:m) \subseteq (\varphi(N):m) \), we have \(ab \notin \varphi(N:m) \). It is clear that \(ab \in (N:m) - \varphi(N:m) \). By hypothesis, \(a \in (N:m) \) or \(b' \in (N:m) \) for some positive integer \(n \). Clearly, \(am \in N \) or \(b'm \in N \) some positive integer \(n \). Hence, \(N \) is a \(\varphi \)-classical primary submodule of \(M \). \(\square\)

The following example shows that the converse of Theorem 2.4 is not true.

\textbf{Example 2.5.} Let \(M = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \) be a \(\mathbb{Z} \)-module. Define \(\varphi: I(R) \to I(R) \cup \{0\} \) by \(\varphi(I) = \begin{cases} \{0\}, & I = \{0\} \\ \mathbb{Z}, & I = \{0, \mathbb{Z}\} \\ 2\mathbb{Z}, & I = 2\mathbb{Z} \\ 3\mathbb{Z}, & I = 3\mathbb{Z} \\ \varnothing, & \text{otherwise} \end{cases} \)

for every ideal \(I \) of \(R \). Consider the submodule \(N = \{0\} \times 2\mathbb{Z} \times 3\mathbb{Z} \) of \(M \). Clearly, \((N:m, m_2, m_3) \in M - N \) is a \(\varphi \)-primary ideal of \(R \), where \((m_1, m_2, m_3) \in M - N \). Define \(\varphi: S(M) \to S(M) \cup \{0\} \) by \(\varphi(K) = \{0, 0, 0\} \) for every submodule \(K \). Notice that \(2 \times (0, 1, 1) \in N - \varphi(N) \), but \(2(0, 1, 1) \notin N \) and \(3^3(0, 1, 1) \notin N \) for all positive integer \(n \). Therefore, \(N \) is not a \(\varphi \)-classical primary submodule of \(M \).
2. Let \(M = \mathbb{Z}_{10} \) be an \(\mathbb{Z}_{10} \)-module. Define \(\phi : S(M) \rightarrow S(M) \cup \{0\} \) by \(\phi(K) = \{0\} \) for every submodule \(K \). Consider the submodule \(N = \{0\} \) of an \(R \)-module \(M \). Clearly, \(N \) is a \(\phi \)-primary submodule of \(M \). Define \(\phi : I(R) \rightarrow I(R) \cup \{0\} \) by \(\phi(I) = \phi(\text{some idea of } R) \). Notice that if \(2 \subset \{0\} = (N : I) - \phi(N : I) \), but \([2] \not\subset (N : I) \) and \([5] \not\subset (N : I) \) for all positive integer \(n \). Therefore, \((N : I) \) is not a \(\phi \)-primary ideal of \(R \).

THEOREM 2.6 Let \((\phi(N) : m) = (N : m) \) for all \(m \in M - N \). Then \(N \) is a \(\phi \)-classical primary submodule of \(M \).

Proof It is clear from Theorem 2.4.

THEOREM 2.7 If \(N \) is a \(\phi \)-classical primary submodule of an \(R \)-module \(M \), then \((N:r) = \{m \in M : rm \in N\} \) is a \(\phi \)-classical primary submodule of \(M \) for every \(r \in R - (N : M) \) with \((\phi(N) : r) \subset (N : r) \).

Proof Let \(a, b \in R \) and \(m \in M \) such that \(abm \in (N : M) - \phi(N : m) \). Then, \(rabm \in N \) and \(abm \not\in \phi(N : r) \). Since \((\phi(N) : m) \subset (N : m) \), we have \(rabm \in (N : r) \). By assumption, \(arm \in N \) or \(\phi(N : r) \) for some positive integer \(n \). Therefore, \(am \in (N : r) \) or \(brm \in N \) for some positive integer \(n \). Hence, \((N : r) \) is a \(\phi \)-classical primary submodule of \(M \).

Remark 2.8 Let \(N \) be a \(\phi \)-classical primary submodule of \(M \), and \(r_1 \in R - (N : M)r_2 \in R - (N : r_1)M \) with \((\phi(N : r_1)r_2) \subset (\phi(N : r_2)r_1) \). Then \((N : r_1), (N : r_2), ... \) are \(\phi \)-classical primary submodules of \(M \) and \(N \) is a \(\phi \)-classical primary submodule of \(M \).

A submodule \(N \) of an \(R \)-module \(M \) is said to be irreducible if \(N \) is not the intersection of two submodules of \(M \) which properly contain it.

Proposition 2.9 Let \(N \) be an irreducible submodule of an \(R \)-module \(M \). For every \(r \in R \) if \((N : r) = (N : r) \), then \(N \) is a \(\phi \)-classical primary submodule of \(M \).

Proof Let \(a, b \in R \) and \(m \in M \) such that \(abm \in N - \phi(N) \). Suppose that \(am \not\in N \) and \(b^r m \not\in N \) for all positive integer \(n \). Clearly, \(N \subset (N + Ram) \cap (N + Rb^m) \) for all positive integer \(n \). Let \(m_n \in (N + Ram) \cap (N + Rb^m) \). This implies that \(m_n \in N + Ram \) and \(m_n \in N + Rb^m \). Then, there exist \(r_1, r_2 \in R \) and \(n, m_n \) such that \(n_1 + r_1 am_n = m_n = r_2 + r_1 b^r m_n \). Since \(an_1 + r_1 am_n = an_1 + ar_1 b^r m_n \), we have \(a^r r_1 m_n \in N \). It follows that \(r_1 m_n \in (N : a^r) \). By the assumption, \(r_1 am \in N \). Thus, \(N = (N + Ram) \cap (N + Rb^m) \). Now since \(N \) is an irreducible of \(M \), we have \(am \in N + Ram \subset N \) or \(b^r m \in N + Rb^m \subset N \), a contradiction. Hence, \(N \) is a \(\phi \)-classical primary submodule of \(M \).

Corollary 2.10 Let \(R \) be a Boolean ring. If \(N \) is an irreducible submodule of \(M \), then \(N \) is a \(\phi \)-classical primary submodule of \(M \).

Proof It is clear from Proposition 2.9.

Theorem 2.11 Let \(M, M' \) be two \(R \)-modules and let \(f : M \rightarrow M' \) be a homomorphism. Suppose that \(\phi : S(M') \rightarrow S(M') \cup \{0\} \) is a function. Then, the following statements hold:

(1) If \(N \) is a \(\phi \)-classical primary submodule of \(M \) and \(f(\phi(N)) \subset \phi(f(N)) \), then \(f^{-1}(N) \) is a \(\phi \)-classical primary submodule of \(M \).

(2) Let \(f \) be surjective. If \(N \) is a \(\phi \)-classical primary submodule of \(M \) and \(f(\phi(N)) \subset \phi(f(N)) \), then \(f(N) \) is a \(\phi \)-classical primary submodule of \(M \).

Proof 1. Let \(a, b \in R \) and \(m \in M \) such that \(abm \in f^{-1}(N) - \phi(f^{-1}(N)) \). Since \(f \) is homomorphism, \(abf(m) = f(abm) \in N \). Clearly, \(abf(m) \not\subset \phi(f^{-1}(N)) \) so \(abf(m) \not\subset \phi(f^{-1}(N)) \). By assumption, \(f(am) = af(m) \in N \) or \(f(b^r m) = b^r f(m) \in N \) for some positive integer \(n \). Thus \(am \in f^{-1}(N) \) or \(b^r m \in f^{-1}(N) \). Therefore, \(f^{-1}(N) \) is a \(\phi \)-classical primary submodule of \(M \).
2. Let \(a, b \in R \) and \(m \in M \) such that \(abm \in f(N) \) and \(\phi \in \{ f(N) \} \). Since \(f \) is surjective, there exists \(m \in M \) such that \(m = f(m) \). Therefore, \(f(abm) = abf(m) = f(N) \). So \(abm \in N \). Clearly, \(abm \notin f(N) \). It implies that \(abm \notin N − \phi(N) \). By assumption, \(am \in N \) or \(b'm \in N \) for some positive integer \(n \). Thus, \(am \in f(N) \) or \(b'm \in f(N) \). Hence, \(f(N) \) is a \(\phi \)-classical primary submodule of \(M \).

Let \(N \) be a submodule of an \(R \)-module \(M \) and let \(\phi : S(M) \rightarrow S(M) \cup \{ \emptyset \} \) be a function. Define \(\phi_N : S(M/N) \rightarrow S(M/N) \cup \{ \emptyset \} \) by

\[
\phi_N(K/N) = \begin{cases}
(\phi(K) + N)/N & \text{if } \phi(K) \neq \emptyset \\
\emptyset & \text{if } \phi(K) = \emptyset
\end{cases}
\]

for every submodule \(K \) of \(M \) with \(N \subseteq K \) (Zamani, 2010). Zamani (2010) gives relations between \(\phi \)-prime submodules of \(M \) and \(\phi_N \)-prime submodules of \(M/N \). This leads us to give relations between \(\phi \)-classical primary submodules of \(M \) and \(\phi_N \)-classical primary submodules of \(M/N \).

Theorem 2.12 Let \(N, K \) be two submodules of \(M \). If \(K \) is a \(\phi \)-classical primary submodule of \(M \), then \(K/N \) is a \(\phi_N \)-classical primary submodule of \(M/N \).

Proof Let \(a, b \in R \) and \(m \in M \) such that \(ab(m + N) \in K(N) - \phi_N(K/N) = (K/N) - (N - \phi(K))/N = (K - \phi(K))/N \).

Clearly, \(abm \in K - \phi(K) \). By assumption, \(am \in K \) or \(b'm \in K \) for some positive integer \(n \). Therefore, \(a(m + N) + K/N \) or \(b'(m + N) \in K/N \) for some positive integer \(n \). Hence, \(K/N \) is a \(\phi_N \)-classical primary submodule of \(M/N \).

Theorem 2.13 Let \(N, K \) be two submodules of \(M \). If \(K/N \) is a \(\phi_N \)-classical primary submodule of \(M/N \), then \(K \) is a \(\phi \)-classical primary submodule of \(M \).

Proof Let \(a, b \in R \) and \(m \in M \) such that \(abm \in K - \phi(K) \). Then, \(ab(m + N) \in K(N) - (K - \phi(K))/N = K/N - (N - \phi(K))/K = (K/N) - \phi_N(K/N) \). By the given hypothesis, \(a(m + N) \in K/N \) or \(b'(m + N) \in K/N \) for some positive integer \(n \). Thus, \(am \in K \) or \(b'm \in K \) for some positive integer \(n \). Hence, \(K \) is a \(\phi \)-classical primary submodule of \(M \).

Now, by Theorem 2.12 and Theorem 2.13, we have the following corollary.

Corollary 2.14 Let \(N, K \) be two submodules of \(M \). Then \(K \) is a \(\phi \)-classical primary submodule of \(M \) if and only if \(K/N \) is a \(\phi_N \)-classical primary submodule of \(M/N \).

Proof The proof is similar to Theorems 2.12, 2.13 and so the details are left to the reader.
Theorem 3.5. Let N be a proper submodule of M. The following conditions are equivalent:

1. N is a φ-classical primary submodule of M.
2. For every $a, b \in R$, $(N:ab) \subseteq (\varphi(N):ab) \cup (N:a) \cup (N:b^n)$ for some positive integer n.

Proof (1 \Rightarrow 2) Let $m \in (N:ab)$. Then $am \in N$. If $abm \in \varphi(N)$, then $m \in (\varphi(N):ab) \subseteq (\varphi(N):ab) \cup (N:a) \cup (N:b^n)$. If $abm \notin \varphi(N)$, then $am \in N - \varphi(N)$.

2. (2 \Rightarrow 1) Let $a, b \in R$ and $m \in M$ such that $abm \in N$. Then, $am \in N - \varphi(N)$. If $am \notin \varphi(N)$, then $am \in N - \varphi(N)$. If $m \in (N:a)$, then $m \in (N:a) \cup (N:b^n)$ for some positive integer n. Hence, $(N:ab) \subseteq (\varphi(N):ab) \cup (N:a) \cup (N:b^n)$ for some positive integer n. Clearly, $am \in N$ or $b'm \in N$ for some positive integer n. Hence, N is a φ-classical primary submodule of M. □
(1) \(N \) is a \(\psi \)-classical primary submodule of \(M \).

(2) For every \(a \in R \) and \(m \in M \) if \(a^nm \not\in N \) for all positive integer \(n \), then \((N:am) = (\psi(N):am) \cup (N:m) \).

(3) For every \(a \in R \) and \(m \in M \) if \(a^nm \not\in N \) for all positive integer \(n \), then \((N:am) = (\psi(N):am) \) or \((N:am) = (N:m) \).

Proof (1 \(\Rightarrow \) 2) Clearly, \((\psi(N):am) \cup (N:m) \subseteq (N:am) \). On the other hand, let \(r \in (N:am) \). Then \(m \in (N:ar) \). Thus by Theorem 3.4, \(m \in (\psi(N):ar) \) or \(m \in (N:x) \) or \(m \in (N:a^n) \) for some positive integer \(n \). This implies that \(r \in (\psi(N):am) \) or \(a^n \in N \) or \(r \in (N:m) \). Since \(a^nm \not\in N \), we have \(r \in (\psi(N):am) \cup (N:m) \). Therefore, \((N:am) \subseteq (\psi(N):am) \cup (N:m) \) and hence \((N:am) = (\psi(N):am) \cup (N:m) \).

(2 \(\Rightarrow \) 3) By the fact that if an ideal (a subgroup) is the union of two ideals (two subgroups), then it is equal to one of them.

(3 \(\Rightarrow \) 1) It is obvious. \(\square \)

THEOREM 3.6 Let \(N \) be a proper submodule of \(M \). The following conditions are equivalent:

(1) \(N \) is a \(\psi \)-classical primary submodule of \(M \).

(2) For every \(a \in R \), \(m \in M \) and every ideal \(I \) of \(R \) if \(aIm \subseteq N - \psi(N) \), then \(Im \subseteq N \) or \(a^nm \subseteq N \) for some positive integer \(n \).

(3) For every \(m \in M \) and every ideal \(I \) of \(R \) if \(Im \not\subseteq N \), then \((N:Im) = (\psi(N):Im) \) or \(\sqrt{(N:Im)} = \sqrt{(N:m)} \).

(4) For every ideals \(I, J \) of \(R \) if \(IJm \subseteq N - \psi(N) \), then \(Im \subseteq N \) or \(m \subseteq \sqrt{(N:Im)} \).

Proof (1 \(\Rightarrow \) 2) Let \(a \in R \), \(m \in M \) and let \(I \) be an ideal of \(R \) such that \(aIm \subseteq N - \psi(N) \). Then \(I \subseteq (N:am) \) and \(I \not\subseteq (\psi(N):am) \). If \(a^nm \subseteq N \) for some positive integer \(n \), then we are done. Let \(a^nm \not\subseteq N \) for all positive integer \(n \). Therefore by Theorem 3.5, we have \(I \subseteq (N:am) = (N:m) \), i.e. \(Im \subseteq N \).

(2 \(\Rightarrow \) 3) Let \(I \) be an ideal of \(R \) and \(m \in M \) such that \(Im \not\subseteq N \). It is easy to see that \((\psi(N):Im) \subseteq (N:Im) \). Assume that \(r \in (N:Im) \). Then \(rim \subseteq N \). If \(rim \subseteq \psi(N) \), then \(r \in (\psi(N):Im) \) so \((N:Im) = (\psi(N):Im) \). Now if \(rim \not\subseteq \psi(N) \), then \(rim \subseteq N - \psi(N) \). By assumption, \(Im \subseteq N \) or \(r^nm \subseteq N \) for some positive integer \(n \). Since \(Im \not\subseteq N \), we have \(r^nm \subseteq N \). Therefore, \(r \in \sqrt{(N:Im)} \). Clearly, \((N:Im) \subseteq \sqrt{(N:Im)} \). Hence \(\sqrt{(N:Im)} = \sqrt{(N:m)} \).

(3 \(\Rightarrow \) 4) Suppose that \(1Im \subseteq N - \psi(N) \), where \(I, J \) are ideals of \(R \). Let \(I \not\subseteq N \). By assumption, i.e. \((N:Im) = (\psi(N):Im) \) or \(\sqrt{(N:Im)} = \sqrt{(N:m)} \). Since \(1Im \subseteq N - \psi(N) \), we have \(J \subseteq (N:Im) \) and \(J \not\subseteq (\psi(N):Im) \). This implies that \(J \subseteq (N:Im) \subseteq \sqrt{(N:Im)} = \sqrt{(N:m)} \).

(4 \(\Rightarrow \) 1) It is obvious. \(\square \)

Let \(M \) be an \(R \)-module. The \(M \) is called a multiplication module if every submodule \(N \) of \(M \) has the form \(IM \) for some ideal \(I \) of \(R \) (El-Bast & Smith, 1988). Note that, since \(I \subseteq (N:M) \) then \(N = IM \subseteq (N:M)M \subseteq N \). Thus \(N = (N:M)M \). Let \(N_1 \) and \(N_2 \) be two submodules of \(M \) with \(N = I, M \) and \(N_1 = I_1, M \) for some ideals \(I_1 \) and \(I_2 \) of \(R \). A product of \(N_1 \) and \(N_2 \) denoted by \(N_1N_2 \) is defined by \(N_1N_2 = I_1I_2M \). The following theorem offers a characterization of \(\psi \)-classical primary submodules.

THEOREM 3.7 Let \(R \) be a noetherian ring and let \(N \) be a proper submodule of a multiplication \(R \)-module \(M \). Then the following conditions are equivalent:

(1) \(N \) is a \(\psi \)-classical primary submodule of \(M \).

(2) \(K, K_2 \subseteq N - \psi(N) \) for some submodules \(K_1, K_2 \) of \(M \), then \(K_1 \subseteq N \) or \(K_2 \subseteq N \) for some positive integer \(n \).
Proof. (1 ⇒ 2) Suppose that \(K_j, K_j \) are submodules of \(M \). Since \(M \) is multiplication, there are ideals \(I_1, I_2, I_j \) of \(R \) such that \(K_j = I_1M \) and \(K_j = I_2M \). Let \(m \in M \). Then \(I_1M = I_2M \) and \(K_j = I_1M = K_j \). Therefore, \(I_1M \subseteq N \) or \(I_2M \subseteq N \) for some positive integer \(n \). Hence, \(K_j \subseteq N \) or \(K_j \subseteq N \) for some positive integer \(n \).

(2 ⇒ 1) Let \(m \in M \) and \(I_1m, I_2m \subseteq N \) for some ideals \(I_1, I_2 \) of \(R \). Thus by part 2, i.e. \(I_1M \subseteq N \) or \(I_2M \subseteq N \) for some positive integer \(n \). Thus \(I_1M \subseteq N \) or \(I_2M \subseteq N \) for some positive integer \(n \). By Theorem 3.6, \(N \) is a \(\phi \)-classical primary submodule of \(M \).

We are finding additional condition to show that a classical primary submodule is a \(\phi \)-classical primary submodule of an \(R \)-module \(M \).

Theorem 3.8 Let \(\phi(N) \) be a classical primary submodule of \(M \). Then \(N \) is a \(\phi \)-classical primary submodule of \(M \) if and only if \(N \) is a classical primary submodule of \(M \).

Proof Suppose that \(N \) is a classical primary submodule of \(M \). Clearly, \(N \) is a \(\phi \)-classical primary submodule of \(M \). Conversely, assume that \(N \) is a \(\phi \)-classical primary submodule of \(M \). Let \(a, b \in R \) and \(m \in M \) such that \(abm \in N \). If \(abm \not\in \phi(N) \), then \(abm \not\in N \). By assumption, \(am \in N \) or \(b'm \in N \) for some positive integer \(n \). Now if \(abm \not\in \phi(N) \), then \(am \in \phi(N) \) or \(b'm \in \phi(N) \). Hence, \(N \) is a classical primary submodule of \(M \).

Definition 3.9 (Bataineh & Khuhail, 2011) Let \(M \) be an \(R \)-module and let \(\phi : S(M) \rightarrow S(M) \cup \{\emptyset\} \) be a function where \(S(M) \) be a set of all submodules of \(M \). A proper submodule \(N \) of \(M \) is called a \(\phi \)-primary submodule, if for each \(m \in M \), \(a \in R \) with \(am \in N - \phi(N) \), then \(m \in N \) or \(a \in \sqrt{(N:M)} \).

Remark 3.10 It is easy to see that every \(\phi \)-primary submodule is \(\phi \)-classical primary.

The following example shows that the converse of Remark 3.10 is not true.

Example 3.11 Let \(R = \mathbb{Z} \) and \(M = \mathbb{Z} \times \mathbb{Z} \). Consider the submodule \(N = \{0\} \times 4\mathbb{Z} \) of \(M \). Define \(\phi : S(M) \rightarrow S(M) \cup \{\emptyset\} \) by \(\phi(K) = \{(0,0)\} \) for every submodule \(K \) of \(M \). It is easy to see that \(N \) is a \(\phi \)-classical primary submodule of \(M \). Notice that \(4(0,1) \in \{0\} \times 4\mathbb{Z} \), but \((0,1) \not\in \{0\} \times 4\mathbb{Z} \) and \(4 \not\in \sqrt{\{(0) \times 4\mathbb{Z}, \mathbb{Z} \times \mathbb{Z}\}} \). Therefore \(N \) is not a \(\phi \)-primary submodule of \(M \).

We provide some relationships between \(\phi \)-classical primary submodules of an \(R \)-module \(M \) and \(\phi \)-primary submodule of \(M \). However, these results require that \(M \) be a cyclic \(R \)-module.

Theorem 3.12 Let \(M \) be a cyclic \(R \)-module. If \(N \) is a \(\phi \)-classical primary submodule of \(M \), then \(N \) is a \(\phi \)-primary submodule of \(M \).

Proof Let \(r \in R \) and \(m_0 = M = Rm \) for some \(m \in M \) such that \(rm_0 \in N - \phi(N) \). Then there exists \(s \in R \) such that \(m_0 = sm_0 \). Therefore, \(sis = rm_0 \in N - \phi(N) \). By assumption, \(sm \in N \) or \(sm \in N - \phi(N) \). Now, the following result follows immediately from Theorem 3.12.

Corollary 3.13 Let \(M \) be a cyclic \(R \)-module. Then, \(N \) is a \(\phi \)-primary submodule of \(M \) if and only if \(N \) is a \(\phi \)-classical primary submodule of \(M \).

Proof This makes the same assertion as Theorem 3.12.

Now, we are finding additional condition to show that a \(\phi \)-primary submodule is a \(\phi \)-classical primary submodule of an \(R \)-module \(M \).
Let \(N \) be a \(\psi \)-classical primary submodule of \(M \) and let \(m_1, m_2 \in M - N \) such that \(\psi(N:m_1) \) is a primary ideal of \(R \) and \(\psi(N:m_2) \subseteq \psi(N:m_1) \). Then, \((N:m) = (N:m_1) - \sqrt{N:m_2} \).

Proof Let \(a \in (N:m) \). Then, \(a(rm_1) = r(am_1) \in N \) for all \(r \in R \). This implies that \((N:m_1) \subseteq (N:m) \). On the other hand, let \(a \in (N:m) \). Then \((ar)m_2 = a(rm_2) \in N \). Clearly, \(ar \in (N:m_2) \). If \(ar \not\in \psi(N:m_2) \), then \(ar \in (N:m_1) - \psi(N:m_2) \). By assumption, \(a \in (N:m_1) \) or \(r \in (N:m_2) \) for some positive integer \(n \). Now by our hypothesis, \(a \in (N:m_1) \). Thus, \((N:m_1) \subseteq (N:m) \). Now if \(ar \in \psi(N:m_1) \), then \(a \in (N:m_1) \) or \(r \in (N:m_2) \) for some positive integer \(n \). Again, by the assumption, \(a \in (N:m_1) \). Therefore \((N:m) \subseteq (N:m_1) \) and hence \((N:m_2) = (N:m_1) \).

Theorem 3.15 Let \(N \) be a \(\psi \)-classical primary submodule of an \(R \)-module \(M \). For any \(m_1, m_2 \in M - N \) such that \(\psi(N:m_1) \subseteq \phi(N:m_2) \) for all \(m \in M - N \). For any \(m_1, m_2 \in M - N \) such that \(\psi(N:m_1) - \sqrt{N:m_2} \neq \emptyset \), we have \(N = (N + Rm_1) \cap (N + Rm_2) \).

Proof Let \(m \in M - N \). To show that \((N:m) \) is a \(\psi \)-primary ideal of \(R \). Let \(a, b \in R \) such that \(ab \in (N:m) - \phi(N:m_2) \). Assume that \(b^n \in R - (N:m_2) \) for all positive integer \(n \). Since \(ab \in (N:m) \), we have \(b \in (N:m_2) \). Clearly, \(b \in (N:m_2) - \sqrt{N:m_2} \). This implies that \((N:m_2) - \sqrt{N:m_2} \neq \emptyset \). By the assumption, \(N = (N + Ram) \cap (N + Rm) \). Now since \(am \in (N + Ram) \cap (N + Rm) \), we have \(am \in N \). Therefore \(a \in (N:m) \). Thus, \((N:a) \) is a \(\psi \)-primary ideal of \(R \). By Theorem 3.15, \(N \) is a \(\psi \)-classical primary submodule of \(M \).

Lemma 3.17 Let \(N \) be a \(\psi \)-classical primary submodule of \(M \) and \(m_1, m_2 \in M - N \) such that \(\psi(N:m_1) \) is a primary ideal of \(R \). For each \(r \in R, m \in M \) and \(m_2 \in M - N \) if \(rm \in N - \psi(N) \), then \(N = (N + Rm_1) \cap (N + Rm_2) \) for some positive integer \(n \).

Proof Let \(r \in R, m \in M \) and \(m_2 \in M - N \) such that \(rm \in N - \psi(N) \). It is clear that \(N \subseteq (N + Rm) \cap (N + Rm_2) \) for any positive integer \(n \). On the other hand, we show that \((N + Rm) \cap (N + Rm_2) \subseteq N \) for some positive integer \(n \). We divide our proof into two cases.

Case 1. If \(rm_2 \in N \) for some positive integer \(n \), then \(Rr^m_2 \subseteq N \). Therefore, \((N + Rm) \cap (N + Rm_2) \subseteq N + Rr^m_2 \subseteq N \).

Case 2. If \(rm_2 \not\in N \) for all positive integer \(n \), then \(r \not\in \sqrt{N:m_2} \). Since \(rm \in N \), we have \(r \in (N:m) \). Clearly, \(r \in (N:m) - \sqrt{N:m_2} \). By Theorem 3.15, \(N = (N + Rm) \cap (N + Rm_2) \). Now since \((N + Rm_2) \subseteq (N + Rm_2) \), we have \((N + Rm) \cap (N + Rm_2) \subseteq (N + Rm) \cap (N + Rm_2) = N \). Therefore, \((N + Rm) \cap (N + Rm_2) \subseteq N \). Hence, \(N = (N + Rm) \cap (N + Rr^m_2) \) for some positive integer \(n \).
Proof The inclusion $N \subseteq (N + rm) \cap \bigcup_{m \in M - N} (N + Rm)$ is clear. For the other inclusion, let $x \in (N + rm) \cap \bigcup_{m \in M - N} (N + Rm)$. Then there exist $m \in M - N$, $r_1 \in R$ and $n_1, n_2 \in N$ such that $n_1 + r_1 m = x = n_2 + r_2 m$. By hypothesis, there exists $\alpha \in (N:m)$ such that $\alpha \notin \sqrt{(N:m)}$. Since $an_1 + ar_1 m = \alpha n_2 + ar_2 m$, we have $ar_1 m \in N$. If $ar_1 m \notin \phi(N)$, then $ar_1 m \in N - \phi(N)$ and as N is a ϕ-primary classical primary submodule of M, we have $r_1 m \in N$ or $a\alpha m \notin N$ for some positive integer n. Since $\alpha \notin \sqrt{(N:m)}$, it follows that $r_1 m \in N$. On the other hand, if $ar_1 m \notin \phi(N)$, then $ar_1 m \notin \phi(N:m)$. Since $(\phi(N:m))$ is a primary ideal of R and $\alpha \notin \sqrt{(N:m)}$, it follows that $r_1 \in \phi(N)$ so $r_1 m \in \phi(N) \subseteq N$. In either case, we have $x = n_1 + r_1 m \in N$. This shows that $N = (N + rm) \cap \bigcup_{m \in M - N} (N + Rm)$. \qed

Now, the following result follows immediately from Proposition 3.18

Corollary 3.19 Let N be a ϕ-primary classical primary submodule of M such that $(\phi(N): m)$ is a ϕ-primary ideal of R where $m \in M - N$. If $(Nm) - \bigcup_{m \in M - N} \sqrt{(N:m)} \neq \emptyset$, then N is not irreducible.

Proof By Proposition 3.17, $N = (N + rm) \cap \bigcup_{m \in M - N} (N + Rm)$. Since $m \in M - N$, we have $N \subseteq N + rm$ and $N \subseteq \bigcup_{m \in M - N} (N + Rm)$. Hence N is not irreducible. \qed

We are finding additional condition to show that a ψ-primary submodule is a ϕ-classical primary submodule of an R-module. Theorem 3.20 Let N be an irreducible submodule of an R-module M. The followings are equivalent.

1) For $m \in M - N$ if $(\phi(N): m)$ is a primary ideal of R, then N is a ϕ-primary submodule of M.

2) N is a ϕ-classical primary submodule of M.

Proof (1 \Rightarrow 2) It is obvious.

(2 \Rightarrow 1) Let $r \in R$ and $m \in M$ such that $rm \notin N - \phi(N)$. Assume that $r^n \notin N - (\phi(N))$ for all positive integer n. By Lemma 3.16, i.e. $N = (N + rm) \cap (N + Rr^m)$ for some positive integer n. Since N is an irreducible submodule of M, we have $N = N + rm$ or $N = N + Rr^m$. Now since $r^n \notin (\phi(N))$, we have $N + Rr^m \notin N$. Therefore, $m \notin Rm \subseteq N + Rm \not\subseteq N$ and hence N is a ϕ-primary submodule of M. \qed

Funding
The authors received no direct funding for this research.

Competing interests
The authors declare no competing interest.

Author details
P. Yiararyong1
E-mail: pairote0027@hotmail.com
ORCID ID: http://orcid.org/0000-0003-1525-9536
M. Siripitukdet1
E-mail: manojs@nu.ac.th
1 Faculty of Science, Department of Mathematics, Naresuan University, Phitsanuloke 65000, Thailand.

Citation information
Cite this article as: On generalizations of classical primary submodules over commutative rings, P. Yiararyong & M. Siripitukdet, Cogent Mathematics & Statistics (2018), 5: 1458556.

References

