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Detecting differentially expressed genes of 
heterogeneous and positively skewed data using 
half Johnson’s modified t-test
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Abstract: Background: Microarray technology allows simultaneously detecting 
thousands of genes within one single experiment. The Student’s t-test (for a two-
sample situation) can be used to compare the mean expression of a gene, taken 
from replicate arrays, to detect differential expression under the conditions being 
studied, such as a disease. However, a general statistical test may have insufficient 
power to correctly detect differentially expressed genes of heterogeneous and 
positively skewed data. Methods: Here we define a differentially expressed gene as 
with significantly different expression in means, variances, or both between the two 
groups of microarray. Monte Carlo simulation shows that the “half Johnson’s modi-
fied t-test” maintains quite accurate type I error rates in normal and non-normal 
distributions. And the half Johnson’s modified t-test was more powerful than the 
half Student’s t-test overall when the ratio of standard deviations between case and 
control groups is greater than 1. Results: Analysis of a colon cancer data shows that 
when the false discovery rate (FDR) is controlled at 0.05, the half Johnson’s modified 
t-test can detect 429 differentially expressed genes, which is larger than the num-
ber of differentially expressed genes (i.e. 344) detected by the half Student’s t. To 
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target 100 priority genes, the half Johnson’s modified t only set FDR to 4.28 × 10−8, 
but for the half Student’s t, it is set to 5.39 × 10−4. Conclusions: The half Johnson’s 
modified t-test is recommended for the detection of differentially expressed genes 
in heterogeneous and ONLY positively skewed data.

Subjects: Computer Science; Mathematics & Statistics; Medicine, Dentistry, Nursing &  
Allied Health

Keywords: gene expression; positively skewed data; Johnson’s modified t-test

1. Introduction
Microarray technology allows simultaneously detecting thousands of genes within one single ex-
periment (Templin et al., 2002). One of the main goals of microarray data analysis is to detect the 
differentially expressed genes, which is a two-step process. The first step involves selecting a statis-
tic to rank the genes by expression data. The second step is to set a criterion (critical value) to con-
sider which of the ranked genes is differentially expressed. The overall aim of this process is to 
identify a number of candidate genes for further studies, such as using molecular biological tech-
niques. Statistical knowledge is often necessary for the analysis of microarray data, as researchers 
deal with massive amounts of data with various sources of variability in order to identify important 
genes. For example, fold change is often used in determining change in the expression level of indi-
vidual gene for detecting differentially expressed genes in a microarray (Chen, Dougherty, & Bittner, 
1997). For simplicity, researchers often use Student’s t-test to compare the mean expression of a 
gene, taken from replicate arrays, to detect differential expression under the conditions being stud-
ied, such as a disease (Dudoit, Yang, Callow, & Speed, 2002; Pan, 2002).

However, a general statistical test may have insufficient power to correctly detect differentially ex-
pressed genes in heterogeneous disease. A heterogeneous disease may encompass a multitude of 
etiological entities that have different morphological features and clinical behavior. Examples of het-
erogeneous diseases are otosclerosis (Van Den Bogaert et al., 2002), rheumatoid arthritis (van der Pouw 
Kraan et al., 2003), primary thyroid lymphoma (Thieblemont et al., 2002), and acute lymphoblastic 
leukemia (Yeoh et al., 2002). A gene may be overexpressed in some cases, but may be expressed nor-
mally or even underexpressed in other cases of heterogeneous diseases. This phenomenon (multimo-
dality) will present itself in a higher variance of case group. That is, the variance (or standard deviation) 
of gene expression values in diseased individuals (cases) is more than that of non-diseased individuals 
(controls). This particular gene provides useful information and belongs to the differentially expressed 
class because of heterogeneity in disease. Further, mean expression values may have a small apparent 
difference in case and control groups, and the gene expression values may follow a positively skewed 
distribution (Newton, Kendziorski, Richmond, Blattner, & Tsui, 2001). In such instances, the conven-
tional t-test or the “half Student’s t-test” (Hsu & Lee, 2010) would not be applicable to detect the gene. 
The original t-test may have less power under conditions of heterogeneity, while the “half Student’s  
t-test” may be powerful; however, neither test is suitable for non-normal data. (Note that here we as-
sume there are some patient subgroups, at least more than one entity, but we don’t know how many 
subgroups exist and how to define and characterize each of them. Otherwise, we can reconstruct the 
diseased subjects according to different “disease entities” rather than simply different “diseases.” Then, 
we can perform a stratified analysis if we have known the patient subgroup structure).

In the statistical genomic field, for the last fifteen years, many researchers have developed innovative 
alternatives relying upon either parametric or nonparametric approaches (Tusher, Tibshirani, & Chu, 
2001) which are based on frequentism or Bayesianism (Smyth, 2004). Moreover, the question of data 
transformation has been extensively discussed by statisticians (Johnson, 1978; Tukey, 1977) and has 
been widely considered with highly relevant implications for microarray. In order to determine differen-
tially expressed genes in heterogeneous and positively skewed data, we propose the “half Johnson’s 
modified t-test.” The half Johnson’s modified t-test is used to correct the t variables for heterogeneity and 
non-normality of the population distribution, without abandoning the Student’s t distribution as a 
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criterion. Here, the null compliance hypothesis would be that two groups (i.e. case group and control 
group) have the same distribution of gene expression data. The alternative hypothesis would be that 
means, variances, or both for the gene expression data are different between the two groups. (Note that 
we assume that a case effect on mean response is expected to be accompanied by an increase in 
variability).

Finally, a Monte Carlo simulation was performed to exhibit the statistical characteristics of the half 
Johnson’s modified t-test in this study, and a colon cancer gene expression data-set (Alon et al., 
1999) was analyzed for demonstration.

2. Methods
Let the sample size, the sample mean, and the sample standard deviation of gene expression for 
case group separately be n1, X1, and s1. The corresponding notations of control group are n0, X0, and 
s0, respectively. The ordinary test statistic ts of the Student’s t-test is as follows:
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The two-sample Student’s t-test can be used in such occasions (i.e. heterogeneous diseases) to 
gauge statistical significances. However, when the diseases under study are heterogeneous 
(Thieblemont et al., 2002; Van Den Bogaert et al., 2002; van der Pouw Kraan et al., 2003; Yeoh et al., 
2002), ts or tw may be underpowered to detect differentially expressed genes.

To tackle the heterogeneity problem, the half Student’s t-test, th, proposed in (Hsu & Lee, 2010) is 
presented as follows:

which only uses the standard deviation of the control group. Hence, the test statistic th is named as 
the half Student’s t-test. Note that th has the same numerator but a different denominator as ts. 
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In case of one sample, the Johnson’s modified t-test (Cressie & Whitford, 1986) was proposed to 
correct t variables (for one sample) if population distribution is not normal, but not abandon the 
Student’s t distribution as a criterion. The form of the Johnson’s modified t-test is derived by using 
Cornish-Fisher expansion and the first few terms of inverse Cornish-Fisher expansion. To correct 
nonzero skewness of tw, Johnson’s one-sample modified t-test was extended to deal with two-sam-
ple test (Johnson, 1978), and the modified test for tw is:
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respectively. The d.f. of twJ is the same as that for tw.

For the two-sample situation (one case group vs. one control group) (Johnson, 1978), in order to 
integrate the features of the aforementioned two modified tests, twJ and th, we propose to only con-
sider the standard deviation of control group in twJ. Then, the half Johnson’s modified t-test would be 
as follows:
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. The significance level is denoted as α in this 
study.

2.1. Monte Carlo simulation
We used free R software (R Development Core Team, 2008) for testing and analysis. The two test 
procedures studied were the half Student’s t-test and the half Johnson’s modified t-test. The analyses 
were performed on two sample sizes: 40 (n0 = n1 = 20) and 120 (n0 = n1 = 60). The difference in means 
of gene expression data between case and control groups was denoted as d, being set to 0, 15, and 
25. The standard deviation ratio of case group to control group was denoted as r, being set to 1, 1.5, 
2, and 2.5. The standard deviation for the control group was set to 30. Let γ3 = E(X − μ)3/σ3 be the skew-
ness coefficient. In addition, γ3 > 1, 0.6 < γ3 ≤ 1, and 0 < γ3 ≤ 0.6 correspond to high, moderate, and 
minor positive skewness, respectively. For the completeness of study, a normality scenario and three 
non-normality scenarios were incorporated: (1) normal distribution; (2) uniform distribution 
(non-normal but symmetric distribution); (3) Gamma distribution (positively skewed and γ3 = 0.6); and 
(4) negatively skewed distribution (γ3 = −0.6). Note that to generate from (4), a random number from 
(3) was first simulated, multiplied by −1, and added by twice of the mean of Gamma distribution.

For each scenario, the half Student’s t-test and the half Johnson’s modified t-test were performed 
under 1,000,000 simulations. It is essential to understand that the null hypothesis corresponds to 
the ratio and difference of r = 1 and d = 0. As for other settings, any exception of the null hypothesis 
would be the alternative one.

2.2. A colon cancer example
A colon cancer data-set consists of 40 tumor tissue samples (case group) and 22 normal colon tissue 
samples (control group). Oligonucleotide arrays provide a broad picture of the state of the cell 
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through monitoring the expression level of thousands of genes simultaneously. Tissue and hybridi-
zation were analyzed by using an Affymetrix oligonucleotide Hum6000 array complementary to 
more than 6,500 human genes. Probes being complementary to the sequence of interest are perfect 
match (PM), while mismatch (MM) happens for homomeric base change at a specific position. A 
probe pair is a combination of a PM and an MM. Each probe pair in a probe set plays potential role in 
determining the signal value. The real signal value is estimated by taking LOG transformation of the 
PM intensity after subtracting the slide estimates. Affymetrix arrays give absolute expression values 
for a given gene. 2,000 genes were further analyzed as they crossed the minimal intensity across 
samples. The average sample skewness of the case group is 1.39, while it is 0.74 for the control 
group. We also use R software to demonstrate the application of the proposed test.

3. Results

3.1. Main findings
Table 1 shows type I error rates that were calculated under significance level (α-level) of 0.05, 0.01, 
0.005, and 0.001. The half Johnson’s modified t-test and the half Student’s t-test maintained fairly 
precise type I error rates in all four distributions and at each significance level when sample size of 
case and control groups was larger (n1 = n0 = 60). When sample size of case and control groups was 
small (n1 = n0 = 20), the half Student’s t-test maintained fairly precise type I error rates under normal 
and uniform distribution. Under uniform distribution, type I error rates of half Johnson’s modified  
t-test are much smaller than significance levels for small samples, whereas they are close to but still 
smaller than significance levels for larger sample sizes. Although the type I error rate of both tests 

Table 1. Type I error rates for the half Student’s t-test and half Johnson’s modified t-test

Significance 
level

n0 = n1 = 20 n0 = n1 = 60
Half Student’s 

t-test
Half Johnson’s 
modified t-test 

Half Student’s 
t-test

Half Johnson’s 
modified t-test

Normal distribution

0.05 0.0492 0.0494 0.0513 0.0510

0.01 0.0102 0.0106 0.0114 0.0113

0.005 0.0051 0.0056 0.0056 0.0057

0.001 0.0010 0.0013 0.0012 0.0012

Non-normal but symmetric distribution (γ3 = 0)

0.05 0.0470 0.0382 0.0496 0.0464

0.01 0.0094 0.0053 0.0096 0.0079

0.005 0.0047 0.0020 0.0047 0.0037

0.001 0.0010 0.0002 0.0010 0.0007

Positively skewed distribution (γ3 = 0.6)

0.05 0.0534 0.0557 0.0514 0.0528

0.01 0.0126 0.0166 0.0104 0.0115

0.005 0.0068 0.0107 0.0052 0.0062

0.001 0.0017 0.0043 0.0010 0.0016

Negatively skewed distribution (γ3 = −0.6)

0.05 0.0529 0.0570 0.0508 0.0523

0.01 0.0122 0.0166 0.0113 0.0122

0.005 0.0071 0.0106 0.0059 0.0068

0.001 0.0021 0.0048 0.0015 0.0020
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was mildly inflated at small significance levels such as 0.005 or 0.001 under skewed distributions, 
such outcome was in line with our expectations due to departure from normality and homogeneity 
of variance (Adusah & Brooks, 2011).

Figure 1 presents the statistical powers of the half Johnson’s modified t-test (solid lines) and the 
half Student’s t-test (dashed lines) with normal distribution. For r > 1 and d > 0, the half Student’s t-
test was more powerful than the half Johnson’s modified t-test overall. Note that the maximal dif-
ference in power between these two tests was 9%. Also note that under d = 0, both tests had some 
power for detecting difference between variances, with power increasing in r. For d > 0, powers of 
both tests decreased marginally as r increased, except for a condition (d = 15, n0 = n1 = 20), power 
increased as r increased.

Under non-normal but symmetric such as uniform distribution, Figure 2 shows the statistical pow-
ers of the two tests. When n0 = n1 = 20, the half Student’s t-test was more powerful than the half 
Johnson’s modified t-test for r > 1, and the largest difference in power was 19%. When n0 = n1 = 60, 
both tests had almost the same power when d > 0.

Figure 1. Statistical power in 
normal distribution.

Notes: Solid line: half Johnson’s 
modified t; dash line: half 
Student’s t. The difference 
in means between case and 
control groups (denoted as d) 
was set to 0, 15, and 25. The 
ratio of standard deviations 
for case group to control group 
(denoted as r) was set to 1, 1.5, 
2, and 2.5.
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Figure 2. Statistical power in 
non-normal but symmetric 
distribution.

Notes: Solid line: half Johnson’s 
modified t; dash line: half 
Student’s t. The difference 
in means between case and 
control groups (denoted as d) 
was set to 0, 15, and 25. The 
ratio of standard deviations 
for case group to control group 
(denoted as r) was set to 1, 1.5, 
2, and 2.5.
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Figure 3 summarizes the statistical powers under positively skewed distributions. What was note-
worthy was that the half Johnson’s modified t-test was more powerful than the half Student’s t-test 
when r > 1 under each of other settings, with the largest difference in power being 12%. The power 
performances of the two tests were similar when r = 1. For d = 0, both tests had some power to de-
tect difference between variances, with power increasing in r for both tests. For d > 0, powers of both 
tests decreased with r increased, except for a case (d = 15, n0 = n1 = 20), power increased in r.

Figure 4 shows the statistical powers under negatively skewed distributions. For r > 1 and d > 0, the 
half Student’s t-test was more powerful than the half Johnson’s modified t-test overall. For d = 0, 
both tests also had some power for detecting the difference in variances between case and control 
groups with power increasing in r, and half Johnson’s modified t-test had a little more power than 
half Student’s t-test under n0 = n1 = 20. However, the half Johnson’s modified t-test could not do so 
when d > 0 and r > 1.5.

3.2. Extensive study results
We also conducted extensive simulations to evaluate the performance of different tests. The results 
are summarized below. (For more details, refer to Supplementary Methods).

Figure 3. Statistical power in 
positively skewed distribution.

Notes: Solid line: half Johnson’s 
modified t; dash line: half 
Student’s t. The difference 
in means between case and 
control groups (denoted as d) 
was set to 0, 15, and 25. The 
ratio of standard deviations 
for case group to control group 
(denoted as r) was set to 1, 1.5, 
2, and 2.5.

Figure 4. Statistical power in 
negatively skewed distribution.

Notes: Solid line: half Johnson’s 
modified t; dash line: half 
Student’s t. The difference 
in means between case and 
control groups (denoted as d) 
was set to 0, 15, and 25. The 
ratio of standard deviations 
for case group to control group 
(denoted as r) was set to 1, 1.5, 
2, and 2.5.
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3.2.1. Unequal sample sizes
We examined the situations of unequal sample sizes. We found that the half Johnson’s modified t-test 
also maintained fairly precise type I error rates under four situations of equal and unequal sample 
sizes. The half Johnson’s modified t-test was also more powerful than the half Student’s t-test in a 
positively skewed scenario for both equal and unequal sample sizes. Notice that type I error rates of 
both tests was marginally inflated at a small significance level of 0.005 or 0.001 under skewed distri-
bution with small control sample and large case sample. It has been discussed that the type I error 
would be inflated at the nominal significance levels for unequal sample sizes (Adusah & Brooks, 2011).

3.2.2. Unequal skewness
We examined the situation of increasing difference in skewness between the control and case 
groups (skewness of the case group is greater than skewness of the control group in most situa-
tions). We found that difference in power (between half Johnson’s t-test and half Student’s modified 
t-test) increased as difference in skewness increased. However, it should be cautioned that type I 
error rates were inflated in scenarios (of r and d) departing from normality and homogeneity of vari-
ance. We also observed that half Johnson’s modified t-test was more powerful than the other tests. 
The results suggested that half Johnson’s modified t-test can overcome heterogeneity and non-
normality simultaneously when 0.3 ≤ γ3 ≤ 0.6 for the control group.

3.2.3. Powers of tests
We examined the power performances of Student’s t-test, half Student’s t-test, Johnson’s modified 
t-test, and half Johnson’s modified t-test. We found that half Johnson’s modified t performs best 
among these tests. It’s no surprise to understand that half Johnson’s modified t-test can overcome 
heterogeneity (a higher variance for case group) and non-normality simultaneously under minor 
positive skewness (0.3 < γ3 < 0.6 for the control group).

3.2.4. Combined test
We examined the power performances of a combined test which simultaneous testing means (using 
Student’s t-test) and variances (using F-test) for the control and case group with a Bonferroni correc-
tion. For comparison of this combined test and two half tests, we found that the Johnson’s modified 
t doesn’t outperform the half Student’s t under r ≤ 1.5 for small sample size normal data. The half 
Student’s t outperforms this combined test when there is a difference in means between the case 
group and the control group under r ≤ 1.4.

3.3. Main findings for colon cancer data
Table 2 presents the numbers (percentages) of differentially expressed genes detected using the 
half Johnson’s modified t, half Student’s t, Welch’s t, and Wilcoxon rank-sum tests (Wilcoxon, 1945), 
respectively. We set significance levels at 0.05, 0.01, 0.005, and 0.001 in this study. The half Johnson’s 

Table 2. Number (percentage) of differentially expressed genes of studied test methods in 
colon cancer data

Test methods
Half Student’s 

t-test
Half Johnson’s 
modified t-test

Welch’s t-test Wilcoxon test

Significance level

0.05 577 (28.9%) 632 (31.6%) 355 (17.8%) 275 (13.8%)

0.01 360 (18.0%) 422 (21.1%) 192 (9.60%) 141 (7.05%)

0.005 299 (15.0%) 368 (18.4%) 147 (7.35%) 99 (4.95%)

0.001 214 (10.7%) 292 (14.6%) 74 (3.70%) 45 (2.25%)

False discovery rate

0.05 344 (17.2%) 429 (21.5%) 117 (5.85%) 48 (2.40%)

0.005 185 (9.25%) 278 (13.9%) 3 (0.15%) 5 (0.25%)
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modified t-test detected more differentially expressed genes than the half Student’s t-test at all 
significance levels.

Since a total of 2,000 genes were selected, we consider controlling the false discovery rate (FDR) 
(Benjamini & Hochberg, 1995; Storey & Tibshirani, 2003) to reduce the problem of multiple testing. 
The FDR (Benjamini & Hochberg, 1995; Storey & Tibshirani, 2003) was set to 0.05 and 0.005, respec-
tively. From Table 2, half Johnson’s modified t-test still detected more differentially expressed genes 
than the other tests. For instance, setting FDR to be 0.05, there are 429 differentially expressed 
genes determined by half Johnson’s modified t-test, while 344 differentially expressed genes are 
determined by half Student’s t-test.

4. Discussion
We found that half Johnson’s modified t-test maintains the nominal α level and is fairly precise for 
normal and skewed distributions when standard deviation of case group is larger than that of control 
group. Further, half Johnson’s modified t-test is more powerful than half Student’s t-test for a posi-
tively skewed distribution. This means that half Johnson’s modified t-test is suitable for studying posi-
tively skewed microarray gene expression data of heterogeneous diseases. In a heterogeneous 
disease, there is more than one entity that causes various clinical pictures and etiologies. Thus, the 
ratio of standard deviation between case group and control group is greater than 1 (that is the case 
group’s standard deviation is larger). However, if the expression data for a heterogeneous disease is 
not positively skewed distributed, half Johnson’s modified t will not achieve good power; instead, there 
may be power loss. Theoretically, half Johnson’s modified t can test for the difference in the means 
and the difference in the variances simultaneously. From simulation results (refer to Supplementary 
Methods for details), half Johnson’s modified t has very low power for testing the difference in two 
variances when means are equal or about the same (even with less power than half Student’s t). But 
this shortcoming can be overcome since one can combine Student’s t and F-test to achieve better 
power when the case group and the control group differ mainly in their variances. Therefore, half 
Johnson’s modified t is mainly a test of equality of two means in heterogeneous diseases.

An overlap analysis was designed to match the baseline (selected as the Student’s t-test) detec-
tion outcome (Supplement Table 4). These methods detected at least 92% overlap in differentially 
expressed genes. Under significance level of 0.05, the half Johnson’s modified t-test had a 95.6% 
overlap and detected the most novel differentially expressed genes (i.e. 260). Researchers may be 
concerned about FDR settings when studying a large number of genes. Half Johnson’s modified  
t-test provided a more rigorous FDR setting than the half Student’s t-test for targeting the same 
number of priority genes. For example, to target 100 priority genes, the FDR for half Johnson’s modi-
fied t-test was set to 4.28 × 10−8, but for the half Student’s t, it was set to 5.39 × 10−4.

In practice, one may calculate the standard deviation of case and control to determine the status 
prior to applying the proposed test, the half Johnson’s modified t-test. We suggest researchers carry 
out both half Student’s t-test and the half Johnson’s modified t-test to compare their results for 
heterogeneous and minor skewed gene expression data. However, if researchers have no prior idea 
about heterogeneity and skewness of gene expression data, then we suggest not using both tests 
simultaneously in the beginning. When detecting differentially expressed genes, type I error rate of 
both tests is mildly inflated at a strict significance level under skewed distribution. Slight inflation of 
type I error rate had no bearing on the findings of the present study. If researchers have enough 
resources to investigate more genes, we suggest they initially choose a moderate significance level 
(i.e. 0.05) for detecting differentially expressed genes.

In conclusion, half Johnson’s modified t-test maintains fairly precise type I error rates in simula-
tion scenarios, when the ratio of standard deviation between case group and control group is large 
(r > 1), and the distribution of gene expression in each group has positive skewness. In summary, half 
Johnson’s modified t-test is recommended for detecting differentially expressed genes in heteroge-
neous and ONLY positively skewed data.
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