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Irreversible thermodynamics of ideal plastic
deformation
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Abstract: Thermodynamics for ideal plastic deformation causing no disorganization of
the structure in the deformed body, which was discussed by P. W. Bridgman studied
(1950), revealed that the concept of entropywas still applicable to its irreversible process.
Noting that the structural invariability in an ideal plastic body is physically equivalent to
the prerequisite of thermodynamics, namely, thermodynamic quantities must be inde-
pendent of the macroscopic body shape, the generalized concept of entropy can be
extended to the other thermodynamic potentials such as internal energy, free energies
and so on. Here the extended generalization for ideal plastic deformation is theoretically
justified on the basis of the irreversible thermodynamics constructed by Prigogine and his
discipline. Thermodynamic state of the ideally deformed body is found to be specified
both by the generalized thermodynamic potential (S, U, F, H or G) and by the irreversible
potential energy J which drives the plastic deformation.
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1. Introduction
Thermodynamics of ideal plastic deformation at constant temperature and pressure was studied
earlier by P. W. Bridgman in USA (1950) (Bridgman, 1950). He examined slip processes of the
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deformation in detail and found that all the thermal energy produced by the plastic deformation
flowed into the heat bath out of the deformed body, leaving no structural disorganization in the
deformed body at all. Consequently no entropy increase is observed in the ideally deformed body.

He was mainly interested in the dual aspect of entropy shown by the stress–strain loop (Figure 1).
The reversible aspect is reflected in the maintenance of the constant entropy during the ideal plastic
deformation, whereas the irreversible aspect is reflected in the clockwise path of the loop as well as
in the hysteresis loss. In order to elucidate the dual aspect above, he extended the concept of
thermodynamic state mainly focusing on entropy and found that the thermodynamic state and
entropy are still applicable to the irreversible process of the ideal plastic deformation. Hereafter the
extended state and entropy are denoted as generalized state and entropy, respectively.

To the best of authors knowledge, no significant studies have been made on the thermody-
namics of plastic deformation since Bridgman’s work, except for the work of J. Kestin and his
groups (Kestin, 1987, 1993; Ponter, Bataille, & Kestin, 1979) and that of Kato (2008). Kestin’s
groups applied non-equilibrium thermodynamics to the Frank-Read source of dislocations, but
unfortunately they could not complete their work. On the other hand, Kato (2008) applied equili-
brium thermodynamics to the plastic deformation with deep consideration. However, there
remains an interesting issue related with the irreversible aspect of the ideal plastic deformation.

At about the same time of Bridgman’s work, I. Prigogine and his school in Belgium dealt with
irreversible thermodynamics of chemical reactions, thermoelectricity and diffusion (Bridgman, 1950;
Kestin, 1987; Kondenpudi & Prigogine, 1998). However, they did not apply their theory to the ideal
plastic deformation that was one of the simplest irreversible phenomena. In this paper, we shall apply
their irreversible thermodynamics to the ideal plastic deformation to justify Bridgman’s generalized
entropy.

2. Stress–strain loop and thermodynamics
Figure 1(a) shows a stress and strain loop of an ideal plastic body. Only a clockwise path of the loop
(OABCDO) is allowed owing to the irreversible character of plastic deformation. All the deformation
dealt in the present work is assumed to be at constant temperature T and pressure P so that they
are not shown explicitly unless otherwise stated.

Figure 1. (a) Stress–strain loop
OABCDEO of ideal plastic body
(Bridgman, 1950). Only the
clockwise path is allowed owing
to the irreversible character of
the plastic deformation. The
loop is closed exactly at the
starting point O and the identi-
cal loop could be repeated
indefinitely. The enclosed area
of the loop is known as hyster-
esis loss (ΔQ).
The yield stress and strain are
denoted by � σA and ±εA,
respectively. The total strain ε
is composed of two kinds of
strain, i.e. elastic (εe) and plas-
tic strain (εp).
(b) Plastic strain εp, its incre-
ment dεp and decrement
dεp ð<0Þ.
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The plastic deformation proceeds along the path from A to B at constant yield stress σA ð> 0 Þ
and from D to E at � σA (Figure 1). The plastic deformation specified above will be abbreviated as
PD. We shall be concerned with the thermodynamics of PD.

The loop of ideal plastic deformation is assumed to cycle indefinitely so that the structure of the
body must return exactly to the original one after each cycle completed (Bridgman, 1950).
Consequently the thermodynamic state of the plastically deformed body is uniquely defined by a
set of stress σ and total strain ε of the loop. Either σ or ε alone is not sufficient. What PD does is to
change the shape of the body keeping the structure unchanged (Figure 2).

The structural invariability is physically equivalent to the prerequisite for thermodynamics, i.e.
independence of thermodynamics from the body shape. This equivalence will play an important
role in generalizing thermodynamic quantities other than Bridgman’s entropy.

3. Entropy, internal energy and Helmholtz energy
PD from A to B and from D to E of Figure 1 changes the shape of the body without any structural
disorganization. Because of the independence of thermodynamics from the body shape, the
thermodynamic state must remain unchanged from A to B and from D to E. In other words, the
same thermodynamic state and potentials at A and D are maintained throughout the subsequent
PD. Consequently all the states from A to B and those from D to E must be reversibly exchangeable.
We shall confirm this observation based on Prigogine’s irreversible thermodynamics later on.

Employing notations in the text book of Kondepudi and Prigogine (Kondenpudi & Prigogine,
1998), the entropy differential dS of the deformed body is given by a sum of di S ð � 0 Þ and de S
respectively due to the irreversible deformation and due to the reversible exchange of energy with
the heat bath (Figure 3). Namely

dS ¼ de Sþ di S (1)

For the sake of convenience, let us call Equaton (1) Prigogine’s equation.

Because of the structural invariability, all the work done during PD is converted into heat and
flows into the heat bath without leaving any effect in the deformed body. We obtain

Figure 2. A series of deformed
states A, B and C of Figure 1(a)
is schematically illustrated. The
unstrained body is denoted by
O. The yield stress (σA) is given
by weight (m). A stopper is set
for B to suppress the indefinite
extension of the body. PD is
observed from A through B.
εC ð ¼ εB � εAÞ is the total plas-
tic strain given. All the differ-
ence between the states A and
B is in their body shapes and no
difference in their structures
(Section 1.).
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di S ¼ Vσdεp=T > 0

de S ¼ � di S
(2)

and therefore

dS ¼ de Sþ di S ¼ 0 (3)

The inequality in the first equation of (2) is attributable to the clockwise path of the stress-strain
loop (Figure 1(a)). Equation (3) tells us that the entropy of the body (S) remains constant during PD.
This is nothing but the prediction of Bridgman’s argument about the generalized entropy.

Equation (3) enables us to generalize the other thermodynamic potentials in the same way. Let
us generalize internal energy U at first.

δ W ¼ Tdi S ¼ VσA dεp (4)

δQ ¼ Tde S (5)

where δW is the work done on the body and δQ ð� 0Þ is the heat flowing out of the body into the
heat bath. Owing to Equation (3), we have

dU ¼ δWþ δQ ¼ T ðdi Sþ de SÞ ¼ 0 (6)

Internal energy (U) remains constant during PD and is thus generalized as entropy is (See
Section 1. and Equation (3)).

As to Helmholtz energy (F) we obtain

d F ¼ d ðU� TSÞ ¼ dU� TdS � S d T ¼ 0 (7)

where we make use of Equations (3), (6) and constant T. In a similar manner Fis generalized for PD.

We thus proved the invariance of the thermodynamic potentials S, U and F during PD.

Figure 3. Entropy differential
(dS) of the ideal plastic body
(darkly shaded). It consists of
di S and de S where the former is
due to the irreversible plastic
deformation and the latter due
to the reversible exchange of
energy with the heat bath
(slightly shaded). When the
heat flows out of the body, the
sign of de S is taken to be nega-
tive. Force f (given by external
weight m of Figure 2) is applied
to extend the body.
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Integrating di S (Equation (2)), we obtain the hysteresis loss (ΔQ).

ΔQ ¼ T
ðB
A
di Sþ T

ðE
D
di S ¼ 2σAεC

¼ Area of OABCDEO
(8)

4. Enthalpy and Gibbs energy
Now let us askwhether or not enthalpy (H) and Gibbs energy (G) can be generalized in the samemanner.

First of all we point out that differentials of enthalpy and Gibbs energy must be zero simply
because thermodynamic state is generalized for PD (Section 3.).

Applying Legendre transformations to H and G intentionally, we would obtain

dH ¼ d ðU� Vεp σAÞ ¼ d U� VσAd εp ¼ � VσAd εp� 0 (9)

and

dG ¼ d ðU� Vεp σA � TSÞ ¼ d U� TdS� SdT� VσAd εp
¼ � VσAd εp� 0

(10)

where we substituted d U ¼ dS ¼ d σA ¼ dT ¼ 0 into the above equations. We have an extra
term � VσAd εp in the equations

which is denoted by dJ.

dJ;� VσAd εp (11)

The extra term arises simply because Legendre transformations have been applied to H and G
without due attention. The thermodynamic state of PD is not specified by εp alone but by a set of
stress σ and total strain ε (Figure 1(a)) and therefore the Legendre transformations (Equations (9)
and (10)) are no longer valid for PD.

Integrating Equation (11), however, we obtain a physically significant quantity J, i.e.

J ¼ � VσA εp (12)

where we assume J ¼ 0 and εp ¼ 0 as the initial condition. J is seen to be the potential energy of
the weight (m) required to drive PD. The clockwise path of the loop implies σA d εp � 0 (Figure 1)
and thus PD proceeds always in the direction of decreasing J (Equation (12)).

We note that PD is externally driven, for instance, by the downward motion of weight m (Figure 2)
and is nothing to do with the thermodynamic state of the deformed body itself. This is the reason
why differentials of the generalized H and G remain constant throughout PD.

To sumup, the thermodynamic state of PD is specified by the generalized state variables (S,U,F,H or G)
and additionally by the potential energy J.

5. Summary

(1) Thermodynamics of ideal plastic deformation studied by Bridgman is reexamined in two
ways. One is based on the independence of thermodynamic formulation from the macro-
scopic body shape and the other on Prigogine’s irreversible thermodynamics.

(2) The thermodynamic state and the thermodynamic potentials are so generalized as to be
applicable to the irreversible process of ideal plastic deformation.
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(3) The generalization above enables us to understand the dual aspect of reversibility and
irreversibility inherent to the ideal plastic deformation.

(4) Thermodynamic state of ideal plastic deformation is specified by generalized thermodynamic
potentials (S, U, F, H and G) and potential energy J.

(5) The ideal plastic deformationalwaysproceeds in thedirection of decreasing J. The potential energy J
arises from theexternal force applied to thedeformedbodyand is responsible for thehysteresis loss.
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