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Process adjustment by a Bayesian approach
Daniel Duret1 and Maurice Pillet2*

Abstract: In a production or measure situation, operators are required to make 
corrections to a process using the measurement of a sample. In both cases, it is 
always difficult to suggest a correction from a deviation. The correction is the result 
of two different deviations: one in set-up and the second in production. The latter is 
considered as noise. The objective of this paper is to propose an original approach 
to calculate the best correction using a Bayesian approach. A correction formula is 
given with three assumptions as regards adjusting the distribution: uniform, trian-
gular and normal distribution. This paper gives a graphical interpretation of these 
different assumptions and a discussion of the results. Based on these results, the 
paper proposes a practical rule for calculating the most likely maladjustment in the 
case of a normal distribution. This practical rule gives the best adjustment using a 
simple relation (Adjustment = K*sample mean) where K depends on the sample size, 
the ratio between the maladjustment and the short-term variability and a Type I risk 
of large maladjustment.
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1. Introduction
Statistical process control has always taken an interest in the detection of out-of-control situations. 
Since Shewhart (1931), who first proposed the eponymous control chart, many contributions have 
been made to detect a process that is deemed as out of control. Several types of control charts have 
improved the Average Run Length (ARL) such as the EWMA chart proposed by Lucas and Saccucci 
(1990) and the CUSUM chart (Hawkins & Olwell, 1998; Page, 1962). More recently, several authors 
have contributed to the improvement of the concept and suggested new advances on control charts, 
either to reduce the size of samples (Torng, Lee, & Liao, 2009), to improve the ARL (Nezhad & Niaki, 
2010) or to adapt them for specific situations such as monitoring the mean of a measurable quality 
characteristic × under 100% inspection (Wu, Wang, & Jiang, 2010). Process adjustment is critical for 
small run, so some research turned to the improvement of control cards for small series (Pillet, 1996).
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The adjustment of the process after detecting a situation that is out of control was also studied in 
parallel to the work on the detection. The statistical approach to the tools setting was first addressed 
by Grubbs (1954). Grubbs proposed a sequence of adjustments using successive approaches. More 
recently, Castillo (1998), Pan (2002), and Trietsch (1998) have proposed a detailed analysis and an 
extension of the Grubbs rule for the adjustment of machines. Recent contributions have focused on 
the adjustment of the tools using the in situ measurement (Kibe, Okada, & Mitsui, 2007) and on the 
interest of the use of neural networks (Liao, Xie, Zhou, & Xia, 2007; Lin & Lin, 2009).

It is not easy to find the best adjustment when the value of the deviation from a given target has been 
estimated. This distance is the result of maladjustment and the process spread. Yet this problem arises 
more frequently with the use of machines in autonomy using automatic monitoring. The objective of 
this paper is to propose an approach for estimating the best correction using a Bayesian approach.

2. The adjustment problem
The adjustment problem can be applied to different situations such as:

• � Monitoring a production parameter,

• � Controlling a gauge tool,

• � Monitoring the bias on a measuring device.

Production is considered as a random process described by an X variable, depending on a θ adjust-
ment parameter.

To simplify the writing of mathematical expressions, the parameter θ represents the deviation 
from the target (which corresponds to a change of origin for the parameter). θ is unknown, the result 
of this study will attempt to estimate it.

The variable X is distributed according to an  distribution depending on the parameter θ (Figure 1). 
It represents the random deviation of production for a given setting, θ:

• � Mean: μ = θ (we assume that the distribution is symmetric because X is often a sample mean).

• � Variance: σ²/√n (if n is very small, the previous symmetry assumption can be questioned).

• � Distribution function: Y = f(X).

• � A particular individual estimate of X will be written xi.

If we take a sample of n individual values for the variables X1, … Xi … Xn, considered a priori as to-
tally independent, then we can determine the adjustment is to analyse the event A, a posteriori. 

Adjuster aggregates the information of the sample by retaining only the average (or median) of the 
sample. This simpler method of treatment leads to a loss of information. We will replace (1) by:

(1)A =

n⋂

i=1

{
Xi = xi

}

Figure 1. Graphic 
representation of the 
adjustment problem.

xi
θ

Target
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The information obtained using this sample informs us, a posteriori, of the probable values of θ.

Before analysing this sample, we had ideas about a priori the parameter θ, which were:

• � θ belongs to a domain defined as Dθ (corresponding to the knowledge of the setting: set point, 
tracking drifts, expertise, etc.).

• � g(θ) being the density of probability on the interval.

For example, the a priori distribution g(θ) is uniform:

• � Dθ = ±δ then, g(θ) = 1/(2.δ) (an adjustment greater than δ is not possible).

After reviewing the event A, a new a posteriori density can be calculated for the parameter θ, 
density conditioned by knowledge of the event A (Delsart & Vaneecloo, 2011):

 

Assuming that all the individual variables Xi are distributed according to the same law , it means 
taking a sample over a relatively short period.

3. θ parameter estimation
There are several possibilities for estimating the parameter θ. For example:
 

We propose to retain the most likely value of θ on the definition of the domain Dθ (it may differ from 
the mean in the case of non-symmetrical distribution).

This is equivalent to finding g(θ/A) maximum; that is to say, finding the maximum of the numera-
tor for the expression (3). It is then necessary to know the probability law of the parameter θ and the 
domain boundaries of Dθ. This paper examines three assumptions for g(θ): uniform, triangular and 
normal distribution (Figure 2).

4. Assuming a uniform distribution for g(θ)

4.1. Best adjustment
In this case, where g(θ) is a constant, it may be omitted in order to look for the most likely value of θ. 
This is equivalent to maximizing the function:
 

In the case where the estimated parameter is the mean, the value of the parameter θ for which this 
function (5) reaches its maximum, is called the “maximum likelihood estimator”.

(2)A = {X = x̄}

(3)g(𝜃∕A) =
f (x̄∕𝜃) ⋅ g(𝜃)

∫
D
𝜃

f (x̄∕𝜃) ⋅ g(𝜃) ⋅ d𝜃

(4)𝜃̂ = E(𝜃∕A)

(5)L(𝜃) = f (x̄∕𝜃)

Figure 2. Different assumptions 
to estimate the maximum 
likelihood of maladjustment.

Target Target Target

Uniform distribution Triangular distribution Normal distribution
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Based on the assumption that the variable X = x̄ is normally distributed with a mean θ and a vari-
ance σ²/n:

 

To find the value of θ that maximizes this function, it is easier to find the maximum of the logarithm 
(the logarithm function is monotone):

 

The first derivative gives:

 

As the second derivative is negative, it is a maximum for:

 

In this particular case, with the assumption of uniform distribution for the parameter θ, the best 
adjustment corresponds to the maximum likelihood estimator.

4.2. Graphic illustration with a uniform distribution for g(θ)
Let us assume that the distribution of X = x̄ex is symmetrical in relation to θ. In addition we will use 
the following variable change:
 

With XP as the random short-term distribution, we will retain a normal marginal distribution:

 

and for the maladjustment θ, an uniform distribution

 

The distribution function for the pair (θ,XP) is given by:

 

Example

σ = 2 μm, δ = 8 μm, n = 5

For a particular instance of X, X = x̄ex, the information for the pair (θ,XP) is not detailed. Therefore, 
several values of θ can correspond to the equation:

 

Figure 3 illustrates all the possible solutions for x̄ = 3 μm.
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In the case of a uniform distribution setting, the best setting 𝜃 = x̄ex corresponds to the maximum 
likelihood estimator.

5. Assuming a triangular distribution for g(θ)

5.1. Best adjustment
In this assumption, g(θ) is not a constant, so the equation to maximize is changed and becomes:
 

The likelihood of a strong adjustment decreases proportionally to θ:

 

With the same assumptions as previously stated, (the variable X = x̄ex is normally distributed with a 
mean θ and a variance σ²/n) we obtain on the half domain (0; δ):

 

By taking the logarithm (the logarithm function is monotone):

 

The first derivative gives:

 

By canceling this derivative, we have a quadratic equation where the physical solution is:

 

(15)L(𝜃) = f (x̄∕𝜃) ⋅ g(𝜃)
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Figure 3. Maximum likelihood 
when g(θ) is uniform.
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5.2. Graphic illustration with a triangular distribution g(θ)
We will take the same example as above and the same experimental values. Only the distribution of 
the pair (θ,XP) is modified, and the density near the point (0.0) is at its maximum.

With the same sample mean of 3 μm, we have the picture given in Figure 4.

Figure 5 gives a view from the plane containing θ and f(θ,XP) allows us to estimate the maximum 
likelihood.

In the previous example, the correction suggested is practically minimal compared to the sample 
mean for small values of the mean. However, when the experimental sample mean is large (close to 
δ), the difference between the average sample and the suggested correction is bigger (Figure 6).

For different values of the sample means (from 0 to 8 μm) with σ = 4 μm and n = 5, Figure 7 gives 
the density of the probability of the maladjustment. The maximum likelihood corresponds to the 
peak of the curve.

5.3. Generalization setting in the triangular case
Equation (20) gives the likelihood of a maladjustment for the case where x̄ > 0. To reflect a negative 
maladjustment, we propose the following modification:
 

(21)
𝜃M =

(𝛿+x̄)

2
−
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2
+

√(
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2

)2
+

𝜎
2

n
for x̄ < 0

Figure 4. Maximum likelihood 
when g(θ) is triangular. f( ,XP)
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Figure 5. Maximum likelihood 
and sample mean.
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Equation (20) was found by canceling the derivative. However, when x̄ tends towards 0, the limits 
where x̄ → 0

+
 and x̄ → 0

−
 are not identical and are different from 0. In this case, the maximum 

likelihood will be forced to 0. Rule (21) must be slightly modified:

 

6. Assuming a normal distribution for g(θ)
With g(θ) corresponding to a normal distribution  (0, �

�
), reflecting a probability for a strong  

extremely low maladjustment, the calculation of the maximum likelihood for θ gives (Duret, 2012):
 

Keeping the same assumptions (the variable X = x̄ex is normally distributed with a mean θ and a 
variance σ²/n), then the L(θ) is:
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Figure 7. Maximum likelihood 
of θ for different sample means 
(from 0 to 8 μm), with σ = 4 μm 
and n = 5.
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By taking the logarithm:

 

The first derivative gives:

 

By canceling this derivative, the solution is:

 

7. Discussion
The choice of the a priori distribution is relatively important for the calculation of the best adjust-
ment, and the difference increases when the ratio σ/δ increases. For example, it is obvious that if the 
short-term variability of the production process (or measurement) is low compared to the variations 
of the parameter θ (σ << δ), the difference between a uniform distribution and a triangular one is not 
very significant. Here, correcting the value of the sample average would be a good idea. On the other 
hand, if the setting is easily compared to the process spread, the correcting of the average is exces-
sive. Using the previous example, the process spread is doubled (σ  =  4  μm instead of σ  =  2  μm, 
δ = 8 μm, n = 3). The corrections are given in Figure 8.

In addition to the choice of distribution law, the choice of the uncertainty involved setting strongly 
in the calculation. Several approaches deserve further developments:

(1) � Knowledge of the probability distribution can be obtained from an observation of historical 
data.

(2) � Determining the prior distribution can be enriched with the knowledge of the sample average 
at the sampling time.

The second point allows refining the calculation of the best adjustment. In the case of a normal 
distribution, Equation (27) was demonstrated. By taking X = z
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Figure 8. Corrections used 
for different sample means 
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We suppose that the knowing of the sample mean gives us information on the maladjustment dis-
tribution. The Type I risk α is the risk of very large maladjustment.

Equation (27) becomes:

 

Posing: r = x̄∕𝜎 (Pillet & Pairel, 2011) this means that the offset is evaluated a posteriori in short-
term sigma:

 

Figure 9 indicates the proportion K of the most likely adjustment with the ratio r for zα = 1.

8. Validation by Monte Carlo simulation
To validate the various assumptions used in this paper, it is necessary to compare the result in terms 
of variability in the same initial maladjustment situations. To achieve this validation, we conducted 
a Monte Carlo simulation with the following conditions:

• � Simulation of a small run of 10 workpieces (n = 1).

• � An initial maladjustment following a uniform distribution [−9; 9].

• � Common causes are  (0, 1).

• � 100,000 run simulations.

Assumptions tested are the following:

• � Shewhart benchmark if x̄ > Control Limit 𝜃M = x̄ else 𝜃M = 0.

• � Uniform distribution 𝜃M = x̄.

• � Triangular distribution (21).

• � Gaussian distribution (27).

• � Enriched Gaussian distribution (28).

• � Enriched Gaussian distribution (29).
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Results of the simulation are global variation (standard deviation) and the average of a million 
measurements. Less the standard deviation is large, better is the assumption. More close to 0 is the 
average, better is the assumption (see Table 1).

Best result is for Equation (29) with zα = 3, worst result is for the uniform assumption and only the 
Gaussian assumptions improve the results vs. the Shewhart benchmark.

9. Conclusion
In this paper, we proposed a method of calculation of the most probable maladjustment using three 
hypothesis of a priori distribution of the maladjustment. The rules we proposed are heavily depend-
ent on the arbitrary choice:

• � The domain of definition Dθ = ±δ for the parameter θ.

• � The probability density g(θ) for the parameter θ.

Between an assumed normal distribution for g(θ) (Duret & Pillet, 2011; Pillet & Pairel, 2011) and an 
assumption of uniform distribution, the choice of a triangular distribution might seem a good com-
promise, but simulation shows the superiority of the Gaussian hypothesis with zα = 3.

Future development must be done in order to propose a method to identify the good probability 
density and the parameter K.

Table 1. Monte Carlo results
Shewhart 

benchmark
Uniform 
Equation 

(9)

Triangle 
Equation 

(21)

Gauss 
Equation 

(27)

Gauss 
Equation 
(29) zα = 1

Gauss 
Equation 
(29) zα = 3

Mean 0.29 1.36 0.01 0.01 0.00 0.01

Standard 
deviation

1.63 1.69 1.75 1.55 1.56 1.49
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