The Dark Triad and Willingness to Commit Insurance Fraud

David Modic, Jussi Palomäki, Marianna Drosinou and Michael Laakasuo

Accepted Manuscript Version

This is the unedited version of the article as it appeared upon acceptance by the journal. A final edited version of the article in the journal format will be made available soon.

As a service to authors and researchers we publish this version of the accepted manuscript (AM) as soon as possible after acceptance. Copyediting, typesetting, and review of the resulting proof will be undertaken on this manuscript before final publication of the Version of Record (VoR). Please note that during production and pre-press, errors may be discovered which could affect the content.

© 2018 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Publisher: Cogent OA

Journal: Cogent Psychology

DOI: http://doi.org/10.1080/23311908.2018.1469579
The Dark Triad and Willingness to Commit Insurance Fraud
David Modica, Jussi Palomäkib*, Marianna Drosinoub, Michael Laakasuob

aComputer Laboratory at the University of Cambridge
JJ Thomson Avenue, Cambridge CB3 0FD, England

bCognitive Science unit, University of Helsinki
University of Helsinki, 00014 Helsingin yliopisto, Finland

Email addresses (in order of authorship): david.modic@cl.cam.ac.uk,
jussi.palomaki@helsinki.fi, maria-anna.drosinou@helsinki.fi,
michael.laakasuo@protonmail.com

*Corresponding author
Jussi Palomäki, jussi.palomaki@helsinki.fi
Abstract

We evaluated how the dark triad (DT) personality traits (Psychopathy, Machiavellianism, Narcissism) influence willingness to claim for insurance in an online setting. In two mTurk studies (Ns 344 and 699) we created realistic online insurance claim tasks where participants could file claims for insured household items they had supposedly broken. We predicted “fibbing” (i.e., overclaiming the item values) in these tasks using the DT traits. However, within Study 2, we included monetary incentives and situational factors relating to claiming – that is, whether the items were broken in anger, while drunk, or by sheer accident. In both studies all DT traits predicted fibbing, but the results were weak for psychopathy in Study 1, while in Study 2 psychopathy was the strongest individual predictor of fibbing. Our results help understand why certain people are willing to commit insurance fraud, and provide an opening for further interdisciplinary research on insurance and personality science.

Public interest statement

Insurance fraud is highly common in the developed world; in the UK alone insurers uncovered over 350 fraudulent claims daily, amounting to weekly losses of about eighteen million pounds. In our paper we look into personality science and link the “dark triad” personality traits (Machiavellianism, psychopathy, and narcissism) to willingness to commit insurance fraud. We found that individuals high in dark triad traits, most notably psychopathy, are more likely to fib in realistic online insurance claim settings. Our results help understand why some people are more willing than others to commit insurance fraud, and highlight the need for further interdisciplinary research on insurance claiming and personality psychology.

Keywords: Dark Triad, deception, Machiavellianism, psychopathy, narcissism, insurance fraud
General Introduction

Most adult residents of the developed world are insured in one way or another. We have social, health and motor insurance, we insure our homes; and many of us insure our belongings. Personal insurance is a lucrative enterprise. For example, the Association of British Insurers (2015a) reports the UK to be the third largest insurance market in the world (and the biggest in Europe), covering approximately 25% of the nation’s total net worth and employing over three hundred thousand people. As is the case with many other lucrative markets, those interested in making a quick buck by not altogether legitimate means are often motivated to act against insurance companies’ guidelines.

It is not possible to estimate with certainty the exact extent of fraudulent insurance claims, but in 2014 UK insurers uncovered over 350 fraudulent claims daily, amounting to weekly losses of approximately eighteen million pounds (Association of British Insurers, 2015b). As is the case in other similar types of crime (e.g., Financial fraud; Durtschi, Hillison, & Pacini, 2004; Geyer, 2010), the actual extent of insurance fraud is likely to be a lot higher. Essentially this means that many people frequently commit insurance fraud, although the actual numbers cannot be presented.

In this paper we look into psychological theories in personality science to gain a better understanding on people who are willing to commit insurance fraud. We focus on the so-called dark triad (DT) traits of personality, which refer to three undesirable characteristics of human personality: psychopathy, Machiavellianism and narcissism. Although the individual constructs have been separately studied for many decades, the unified term “dark triad” was introduced by Paulhus and Williams (2002) as a theoretical improvement over existing models of human personality (such as the Five Factor Model; Goldberg, 1992; McCrae & Costa, 1987). The DT traits are distinct but overlapping constructs that help
explain a variety of behaviours typically viewed as unethical, blameworthy, deceitful, manipulative or self-centred (Lee & Ashton, 2005).

Evidence suggests that both Machiavellian (high Machs) and psychopathic individuals are callous, deceptive, amoral, and have self-interested goals (McHoskey, Worzel, & Szyarto, 1998); although it seems that high psychopathy in particular is associated also with increased trait impulsivity (Hancock, Woodworth, & Porter, 2011; Newman, 1987; see also Vize et al., in press; for a meta-analysis on the DT traits). For example, both high psychopathy and Machiavellianism positively predict essay plagiarism, which requires planning and self-control, whereas copying exam answers on the “spur of the moment” is mainly associated with high psychopathy (Williams, Nathanson, & Paulhus, 2010).

Narcissism is typically associated with self-importance, entitlement, arrogance and need for admiration (Lee & Ashton, 2005; Raskin & Terry, 1988; Raskin & Hall, 1979). Narcissism has also been meta-analytically linked to counterproductive work behavior such as theft, sabotage, and spreading rumors about co-workers (O’Boyle, Forsyth, Banks, & McDaniel, 2012) as well as other outcomes that include a deception (Aviram & Amichai-Hamburger, 2005; Chatterjee & Hambrick, 2007); but compared with the other DT traits, its connection to manipulative or deceitful behaviour has been less prominent. Narcissism correlates with a preference for one-night stands and friends-with-benefits, but also with transgressions in long-term relationships (Campbell, 1999). Out of the three DT traits, narcissism has the least amount of overlap with the other two traits, although all three components share a self-centered bias.

While Machiavellianism, psychopathy and narcissism have been typically viewed as distinct (albeit closely related) constructs, recent evidence has questioned this view. For example, Persson and colleagues (2017) argue that the three traits share too much variance to be viewed as clearly individual traits, and suggest using a compound score across all DT
traits when measuring the “malevolent” aspects of human personality. Given the combined nature of the DT traits and their association with deceitful, manipulative and blameworthy behaviour, it is reasonable to presume they would all correlate with insurance claim behaviour; such as overclaiming, or claiming under conditions where the claim would not be honoured (such as in the case of household insurance claiming for items that were broken accidentally while drunk, or intentionally while angry).

Therefore, measuring individual differences across the DT traits helps to shed light on general willingness to commit insurance fraud. In addition, because of the pervasive nature of insurance, we will achieve comparably high ecological validity. Due to reasons of confidentiality, obtaining the correlations between DT traits and actual insurance claim data is virtually impossible. Thus, we propose to evaluate insurance claim behaviour using realistic online insurance claim scenarios. We hypothesized that when analysed separately, or as a uniform construct (as suggested by Persson et al., 2017), all DT traits are positively associated with claim sizes and “fibbing” (i.e., overclaiming the value of the insured item, or likelihood of entering to file claims when the items were broken intentionally when angry, or accidentally while drunk).

General Method

Participants and procedure

Two studies were run consecutively. Data were gathered online in both of them, using LimeSurvey. Our participants were recruited via Amazon Mechanical Turk (mTurk) and repeat participation was deterred by the use of the TurkGate¹, and by disallowing duplicate IP-addresses from participating. Participants could take part in only one of the two studies; and had to have a 99% or higher mTurk worker approval rating. Both studies were carried out

¹ http://gideongoldin.github.io/TurkGate/
in accordance with the recommendations of the Newcastle University ethics committee, with written informed consent from all subjects in accordance with the Declaration of Helsinki.

In both studies the participants were native English speakers living in the USA whose household income ranged from “less than US $10,000” to “more than $100,000” (the median income level was reported as “between $40,000 and $49,999”). About half of the participants held a Bachelor’s degree (Study 1: 36%, Study 2: 40%) or higher (Study 1: 14%, Study 2: 11%). On average, our respondents held three different types of insurance ($M_{\text{Study 1}} = 2.88$, $M_{\text{Study 2}} = 2.77$), with vehicle insurance being the most frequent (Study 1: 86%, Study 2: 85%), followed by health (Study 1: 79%, Study 2: 84%) and property (Study 1: 55%, Study 2: 50%) insurance. Most participants worked in the private sector (Study 1: 35%, Study 2: 37%), followed by public sector (Study 1: 22%, Study 2: 16%) and self-employment (Study 1: 10%, Study 2: 12%). For study-specific demographic data, see the appropriate Sections.

In both studies, the survey consisted of six sequential parts:

1. Introduction. Brief explanation of the survey structure, description of data handling, and informed consent.

2. Demographics (age, birth gender, education, income, ethnicity, marital status, occupation, types of insurance held).

3. Exploratory questionnaire measures\(^2\) and the Short Dark Triad measure (Jones & Paulhus, 2014).

4. Insurance claim task instructions (Study 1 and 2) and randomization into experimental conditions (Study 2)\(^3\).

\(^2\) The specifics of these measures are presented in the Supplementary Materials section. The results concerning these scales will be reported elsewhere.
5. Insurance claim task.
6. Demand characteristics and debriefing.

Study 1

In Study 1 we aimed to obtain baseline information on individuals’ claiming behaviour in a simple online insurance claim setting. We sought to establish the associations between the DT traits and insurance claiming behaviour when insured household items are broken purely by accident; (for a list of items see the Supplementary Materials section), with claim sizes above the insurance company item valuation interpreted as “fibbing”.

Method of Study 1

Participants. Initially 374 self-selected participants took part in Study 1. After removing incomplete, inappropriate and duplicate responses, we ended up with 344 participants (N = 344; 191 females, 146 males, 7 unreported; $M_{\text{age}} = 40$ years; $SD_{\text{age}} = 12.4$; age ranged between 18 and 75). On average, it took 16 minutes to fill out the survey, and the participants who completed it were paid US $0.5.

Materials.

Dark triad of personality (DT-short). The DT-Short is a relatively new measure of the dark triad traits with promising psychometric properties (Jones & Paulhus, 2014). It measures Machiavellianism, psychopathy, and narcissism with 9 items each. The scale uses a five-point Likert scale from 1 (“Strongly Disagree”) to 5 (“Strongly Agree”). Example items are “It’s not wise to tell your secrets” (Machiavellianism), “People see me as a natural leader” (narcissism), and “I like to get revenge on authorities” (psychopathy). All three scales

3 Both studies included also an additional experimental manipulation that is not reported in this article. The manipulation was aimed at deterring the participants from “fibbing” in the claim forms. Details of these manipulations are presented in the supplementary materials. The main results presented in the current article were robust to adding these manipulations in the statistical models as fixed factors of no interest; there were also no significant interactions between the covariates of interest (demographics and the DT traits) and the deterrence manipulations.
had adequate inter-item reliability as measured by Cronbach’s alpha (Machiavellianism: .78; narcissism: .76 and psychopathy: .79). The Cronbach’s alpha for the uniform DT scale was .85; the uniform scale was the mean score across all 27 items.

Insurance claim task. Participants were asked to decide whether to file claims for six household items they were told they accidentally broke. These items (all values were expressed in US $) were a china set ($2000), a mirror ($1600), a wall clock ($1000), an iPhone 6 ($500), a lamp ($300), and a vase ($160). The images of the items are listed in in the Supplementary Materials Section. We chose these items because they are relatively common and easily broken. Due to reasons of confidentiality, it is extremely difficult to determine the proportion of households that have any of the specific items insured. Usually, household items are insured in bulk in contents insurances, which were owned by about 76% of households in the UK; and the rates are similar in the USA (Association of British Insurers, 2015). The presentation order of the higher value (china set, mirror, wall clock) and lower value items (iPhone 6, lamp, vase) was counterbalanced.

The participants were asked to use an insurance claim form ostensibly hosted on a fictitious insurance company website, but actually integrated into the survey structure. They were told to imagine their home insurance is underwritten by (fictitious) “ACME Insure”. ACME was claimed to cover a variety of damages to personal property or movables caused by accidents of mishaps, with a deductible of 10 % (i.e., the refund offered is at most 90% of the purchase price). Participants read the task instructions, indicated having understood them, and entered the task.

For each item, the claim task consisted of three sequential pages. On the first page, participants were shown the picture of the item they supposedly broke by accident, a brief explanation of how the accident occurred, and the purchase value of the item in US dollars. They were then asked if they would file an insurance claim in that situation. If participants
opted out, they were taken directly to the next item. If they decided to file a claim, they were
taken to the insurance claim web page (i.e., the second page).

The second page was designed to resemble an actual insurance claim web form (cf. Supplementary Materials section; Figure S1). There was a clear contrast in style between the insurance claim page and the other survey pages in order to increase ecological validity. The form consisted of seven fields. In terms of our aims, the most relevant item was the fourth one: “How much do you wish to claim (in US $)?” The amount entered had to be between 0 and 9999. In this field, participants were also reminded of the deductible of 10%, and shown the actual sum they would be paid (i.e., [claim amount] * 0.9), if the claim was approved. Once they clicked Submit Claim at the bottom of the page they were transported back into the pages styled as the main survey.

On the third page, the participants were shown the picture of the item again (including its purchase price), and their responses in the claim form were recapped. Finally, they were asked to indicate on a Likert 1-7 scale how appropriate (1 = very inappropriate, 7 = very appropriate) it was to claim $X (their claim amount) for the specific item.
Dependent variable (DV). We first evaluated participants’ willingness to file a claim for each individual item. Participants were generally more willing to file claims for the expensive items (china set, mirror, wall clock) than for the inexpensive ones (iPhone 6, lamp, vase). On average, the claim form was entered in 74.5% and 38.3% of the cases for the expensive and inexpensive items, respectively. A number of participants, 12.6% (n = 43), did not file a claim for any item. In our analyses the results did not significantly differ across the high / low value items. Thus, all the items were amalgamated for analysis. Our DV indexed whether or not the participant over-claimed the item value (i.e., *fibbed*) in one or more of the claims. *Fibbed* was a dichotomous variable indexing those participants who: did not fib (n = 310), and 2: fibbed (n = 34). Note that the group “did not fib” includes also participants who did not file a claim.

Results of Study 1

Zero-order Pearson correlations between our variables are presented in Table 1 (with point-biserial correlation for the dichotomous DV). As expected, all DT traits were positively intercorrelated \((r_s > .41, p_s < .001) \). The dichotomous *fibbed* variable was also positively correlated with all variables, most notably the uniform DT scale (point-biserial \(r = .14, p = .01 \)).

<table>
<thead>
<tr>
<th>Variables</th>
<th>(M (SD))</th>
<th>Mach.</th>
<th>Psych.</th>
<th>Narc.</th>
<th>Dark Triad</th>
<th>Fibbed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mach.</td>
<td>2.85 (.71)</td>
<td>.59***</td>
<td>.41***</td>
<td>.83***</td>
<td>.12*</td>
<td></td>
</tr>
<tr>
<td>Psych.</td>
<td>1.85 (.65)</td>
<td>.43***</td>
<td></td>
<td>.82***</td>
<td>.9</td>
<td></td>
</tr>
<tr>
<td>Narc.</td>
<td>2.50 (.69)</td>
<td>.76***</td>
<td></td>
<td></td>
<td>.13*</td>
<td></td>
</tr>
<tr>
<td>Dark Triad</td>
<td>2.80 (.55)</td>
<td></td>
<td>.14**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibbed (DV)</td>
<td>0.1 (.29)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next, we entered the DT traits into logistic regression models, predicting Fibbed (a dichotomous variable). The first model, which included all three DT traits as predictors, was statistically nearly significant ($\chi^2(3) = 7.35, p = .062$, Nagelkerke $R^2 = .044$); however, none of the individual predictors were significant. This suggested that the effects of the individual DT traits were suppressing one another. We then examined the Variance Inflation Factor (VIF) - values separately for all DT traits, which were 1.3, 1.63 and 1.6 for narcissism, psychopathy, and Machiavellianism, respectively. This suggested mild (but not severe) multicollinearity between the variables.

The uniform DT scale as a sole predictor was positively associated with the likelihood of being a fibber (i.e., having claimed above the item purchase value at least once) as opposed to a non-fibber ($WALD = 6.35, p = .012$, OR = 2.2, 95% CI [1.2, 4.3]). These results were robust to including demographic variables (age, gender, income, education) into the models as covariates, as well as re-running all analyses with bootstrapped confidence intervals (using the bias-corrected accelerated method). Since iPhones are probably more common among younger participants, and thus familiarity with iPhones might differ across our participants, we re-ran all analyses by excluding the iPhone-related data. However, this did not change the results in a meaningful way.

Discussion of Study 1

In Study 1, we observed somewhat clear effects for the DT traits, both individually (particularly for narcissism and Machiavellianism) and as a uniform construct, in predicting willingness to commit insurance fraud. In Study 1, participants often did not claim money for the items despite knowing they were within their rights to do so. The lack of monetary incentives for filing the claims is one possible explanation. This would be in line with research by Smith and Walker (1993) showing that monetary incentives significantly
influence response rates and participant behaviour.

Study 2

In Study 2 we re-evaluated our original hypothesis on the DT traits and claiming behaviour by increasing ecological validity and by introducing (1) monetary incentives and (2) situational factors pertaining to the motivation to rationalize fibbing. In a non-experimental context insured objects may be broken (a) accidentally; (b) as a result of an affective state (i.e., in anger); or (c) under the influence of intoxicants – for example while drunk. We implemented these scenarios in a form of vignettes describing the situation. In addition, this allowed us to evaluate claiming behaviour in situations where claiming is fibbing by insurance companies’ definition.

We postulate that these situational factors influence the frequency and amount of claims, quite apart from the effect of the DT traits on claiming. When individuals are able to impute their actions to outside influence (i.e., reification; Waytz, Epley, & Cacioppo, 2010), they will find it easier to rationalize cheating – unlike when they have broken the items in anger where the impetus for action is intrapersonal. Therefore, we additionally hypothesized that participants who were told that they have broken the experimental items in anger will fib less than those who have broken them while under the influence of alcohol, or accidentally.

Due to the low “fibbing” rates in Study 1 (i.e., very few participants claimed above the item values), we also decided to slightly modify the task and its instructions in Study 2 in order to increase likelihood of getting participants to fib (see below for details).

Method of Study 2

Participants. Initially, 753 participants took part in Study 2. After removing incomplete, inappropriate and duplicate responses, we ended up with 699 participants (N =

4 Breaking insured items while intoxicated might also be accidental or unintentional, whereas breaking items in anger can be considered intentional. However, from the perspective of insurance companies, claims are typically honored only when the items are broken accidentally (or unintentionally) and while clearheaded.
699; 334 females, 360 males, 5 unreported; $M_{\text{age}} = 32.2; SD_{\text{age}} = 10.2; \text{age ranged between 18 and 69}$). On average, it took 18 minutes to complete the survey, and those who did it were paid US $1.22 on average ($0.5$ plus an average bonus of 0.72, with a standard deviation of 0.6).

Design and materials. With everything else the same, the following changes were made to the experimental design and insurance task in Study 2:

1) Participants were randomly assigned across three conditions. Before filling out the claim form, participants read one of the three vignettes describing in detail the circumstances under which the various items were broken. The items were reported to be broken either (a) accidentally, (b) in anger, or (c) while drunk. The word counts of the vignettes were held as similar as possible across the conditions and various items (for the full vignettes cf. Supplementary Materials section).

2) For simplicity, only the expensive items (china set, wall clock, mirror) were included in the tasks as in Study 1 they were more often claimed for than the inexpensive items.

3) The deductible was increased from 10% to 15% to better reflect real-world deductible rates in home insurance policies.

4) Due to the low “fibbing” rates in Study 1 (i.e., very few participants claimed above the item values), the task instructions were modified. The participants were told that they had purchased the items at a specific price (from a discount shop, or similar), but were given a higher valuation by the insurance company. This valuation was the same as the item purchase value in the first experiment (US $2000, $1600, and $1000 for the china set, mirror, and wall clock, respectively). The purchase value in the second experiment was $\sim20\%$ lower (US $1600, $1300, and 800). This modification
allowed us to calculate two indices of fibbing: Claims above the actual purchase value5 and claims above the insurance company valuation.

5) Monetary incentives were added to the experimental design.

\textit{Compensation and monetary incentives for fibbing.} Participants’ base-rate compensation was US $0.5. In addition, participants were told they would be paid 0.1\% of the claimed amount (after the deductible) as a bonus, based on a randomly selected item among the ones they filed a claim for – but \textit{only} if the claim clears. For example, if there was a claim of $1000 ($850 after deductible) on an insured item randomly selected by us, the participant would receive a bonus of $0.85, \textit{if} the claim cleared.

Participants were told that whether or not the claim cleared depended on ACME Insure’s expert computer system, which would evaluate it. The system would evaluate \textit{only} the claim (information entered on that particular form) and nothing else. Thus, participants were led to believe the system would not have knowledge of what happened when the item was broken, as would happen in an actual insurance procedure (cf. Dionne, Giuliano, & Picard, 2009). Participants were also told that the higher the claim above the valuation, the higher the chance of the claim being rejected (this being one of the internal review indicators in real-world insurance claims). Finally, participants were warned that if ACME’s system caught them making an inappropriate claim, they would not only get no bonus, but their MTurker ID would be blocked from participating in the next ten experiments run by us (we subsequently blocked seven participants in total; details are given below).

Since the maximum amount participants could claim for an item was $9999 ($8499 after the deductible), the maximum bonus possible was $8.49. Participants did in fact have a chance to earn a bonus as high as this, but it was low (i.e., \textit{~}1 in a 1000 chance). We used the

5 If participants knew they could repurchase the item at a specific price (the purchase value), claiming more than that price from the insurance company is akin to fibbing.
following *a priori* probabilities (unknown to the participants) in evaluating the claims and compensating participants: For claims 10 – 30% above the insurance company valuation, the probabilities of the claim being rejected were 9.1 – 23.1%. For claims 40 – 50% above the valuation, the probabilities were 58.6 – 63.3%. For claims 60 – 90% above the valuation, the probabilities were 87.5 – 97.4%. Finally, for claims at least 100% above the valuation, the probability of being caught was 99% or higher. We settled on these probabilities to increase the likelihood of obtaining a bonus spread resembling a normal distribution. The participants were not apprised of the likelihood of their claim being accepted, as that would depart from ecological validity and lead them into treating the experiment as an economic gamble.

Dark triad of personality (DT-short). The Cronbach’s alpha values in Study 2 were .79, .77, and .80 for Machiavellianism, narcissism, and psychopathy, respectively; and .88 for the uniform DT scale.

Dependent variables (DVs). Of the participants, 35.3% (n = 247) did not file a claim for any item (*angry* condition: 48.4%; *drunk* condition: 37.8%; *control*: 20%). Only nine participants claimed above the insurance company valuation for any item (of these, seven MTurker ID’s claims were rejected for making a fraudulent claim, and subsequently banned from participating in our next ten experiments). As few participants claimed above the insurance valuation, we used claims above the actual purchase value as the index for fibbing.

We used the same DV as in Study 1 but modified it to reflect the proportion of money claimed above the *actual* item purchase value (but otherwise calculated as in Study 1; in Study 2, the number of participants categorized as “fibbed” and “did not fib” were 256 and 443, respectively).6

6 However, we also performed a t-test (with bootstrapped confidence intervals, using the bias corrected accelerated method) comparing the overall DT scores of the 9 participants who claimed above the insurance company valuation (*super-fibbers*) to the rest of the sample. The “super-fibbers” group scored higher (*M* = 3.22, *SD* = 0.28) than the rest of the participants (*M* = 2.87, *SD* = 0.52): *t*(8.75) = -3.57, *p* = .006 (Levene’s test was violated and equal variances was not assumed).
Results of Study 2

We again calculated zero-order Pearson correlations between our variables; these are presented in Table 2, separately for each experimental condition with point-biserial correlation for the dichotomous DV. All DT traits were positively intercorrelated ($r_s > .29, ps < .001$). The dichotomous fibbed variable was also positively correlated with all variables, most notably the uniform DT scale, and Psychopathy, in the Angry condition (uniform DT scale: point-biserial $r = .2, p = .003$; Psychopathy: $r = .23, p < .001$). There was no statistically significant interaction between the “DT traits – Fibbed” -link and condition (Angry, Drunk, Control).

Table 2
Correlations Among Study 2 Variables Separately for Each Condition (Angry, Drunk, Control)

<table>
<thead>
<tr>
<th>Variables</th>
<th>M (SD) Mach.</th>
<th>M (SD) Psych.</th>
<th>M (SD) Narc.</th>
<th>M (SD) Dark Triad</th>
<th>M (SD) Fibbed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mach. (Angry)</td>
<td>2.96 (.75)</td>
<td>.50***</td>
<td>.38***</td>
<td>.83***</td>
<td>.122^</td>
</tr>
<tr>
<td>(Drunk)</td>
<td>2.90 (.66)</td>
<td>.52***</td>
<td>.29***</td>
<td>.79***</td>
<td>.14*</td>
</tr>
<tr>
<td>(Control)</td>
<td>2.98 (.67)</td>
<td>.57***</td>
<td>.41***</td>
<td>.83***</td>
<td>.14*</td>
</tr>
<tr>
<td>Psych. (Angry)</td>
<td>2.38 (.64)</td>
<td>.46***</td>
<td>.83***</td>
<td>.23**</td>
<td></td>
</tr>
<tr>
<td>(Drunk)</td>
<td>2.36 (.63)</td>
<td>.33***</td>
<td>.79***</td>
<td>.13*</td>
<td></td>
</tr>
<tr>
<td>(Control)</td>
<td>2.41 (.63)</td>
<td>.37***</td>
<td>.81***</td>
<td>.11^</td>
<td></td>
</tr>
<tr>
<td>Narc. (Angry)</td>
<td>3.35 (.70)</td>
<td>.76***</td>
<td>.13*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Drunk)</td>
<td>3.26 (.66)</td>
<td>.71***</td>
<td>.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Control)</td>
<td>3.32 (.66)</td>
<td>.75***</td>
<td>.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark Triad (Angry)</td>
<td>2.90 (.56)</td>
<td></td>
<td>.20**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Drunk)</td>
<td>2.84 (.49)</td>
<td></td>
<td>.14*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Control)</td>
<td>2.90 (.52)</td>
<td></td>
<td>.14*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibbed (Angry)</td>
<td>0.52 (.56)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Drunk)</td>
<td>0.62 (.48)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Control)</td>
<td>0.55 (.49)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes. ^ $p < .1$; * $p < .05$; ** $p < .01$; *** $p < .001$. For Fibbed, 0 = did not over-claim, 1 = over-claimed at least once. Mach. = Machiavellianism. Psych. = Psychopathy. Narc. = Narcissism. Dark Triad = The uniform DT scale. Point-biserial correlation is used for Fibbed.
As in Study 1, we evaluated whether or not the participants claimed above the item purchase values on one or more occasions, and entered the DT traits and the (dummy-coded) categorical Vignette variable (angry, drunk, control) into logistic regression models, predicting the dichotomous *Fibbed* variable. The first model, which included all individual DT traits and the dummy-coded Vignette as predictors, was statistically significant ($\chi^2(5) = 30.9, p < .001$, Nagelkerke $R^2 = .059$). The main effect of Vignette was significant ($WALD = 11, p = .004$): Participants who had read the Angry vignette were less likely to fib than those who had read the Drunk vignette ($B = .67, p = .001, OR = 1.96, 95 \% CI [1.3, 2.9]$).

Controlling for the other DT traits, only Psychopathy was a significant predictor of fibbing ($B = .37, p = .015, OR = 1.45, 95 \% CI [1.07, 1.97]$). As in Study 1, we again examined the Variance Inflation Factor (VIF) -values separately for all DT traits, which were 1.22, 1.53, and 1.5 for narcissism, psychopathy, and Machiavellianism, respectively; this suggested similar levels of mild multicollinearity as in Study 1.

We then replaced the individual DT traits with the uniform DT scale, retaining Vignette in the model, which resulted in a significant model ($WALD = 28.8, p < .001$, Nagelkerke $R^2 = .055$). In this model, the uniform DT scale positively predicted fibbing ($B = .64, WALD = 16.8, p < .001, OR = 1.89, 95 \% CI [1.39, 2.6]$). Next, we tested whether the interactions between any of the DT traits, or the uniform DT scale, and Vignette were significant, but found no significant results (all p-values > .2). Thus, although the link between psychopathy and fibbing was seemingly strongest in the *Angry* condition, the DT traits seem to have mainly uniform effects on fibbing, regardless of whether the items are broken accidentally, while drunk, or in anger. As in Study 1, all of the analyses above were robust to including demographic variables (age, gender, income, education) into the models as covariates.
Discussion of Study 2

Although there were no interactions between the different vignettes and DT traits, participants in Study 2 were less likely to fib (i.e., overclaim the item price on one or more occasions) when items were broken when they were angry as opposed to while drunk. Shifting the locus of control onto an external entity (alcohol in this case) putatively enabled participants to rationalize entering the claim form and claiming money, even when doing so was prohibited by the terms of service. This finding is in line with research by Room (2001) and meta-analysis by Crawford (1987), who both show that ingesting alcohol is used as an excuse for actions that cross normative boundaries in many cultures and contexts. In Study 2, controlling for the other DT traits, psychopathy emerged as the strongest individual predictor of fibbing; although due to mild multicollinearity, this result should be interpreted with caution.

General Discussion

In two studies, by examining the dark triad traits of personality, we sought to shed light on willingness to commit insurance fraud in naturalistic insurance claim tasks. In Study 1, we first established a baseline for fibbing behavior in a simple online insurance claim setting, and in Study 2 we increased ecological validity by introducing monetary incentives and situational factors pertaining to the motivation and incentives for claiming and fibbing.

In both studies we confirmed that to some extent all DT traits positively predicted fibbing – and the effects were the strongest when the uniform DT scale was used as a predictor. The lack of monetary incentives in Study 1 might explain the relatively weak link between psychopathy and fibbing, and why psychopathy emerged as the strongest individual predictor of fibbing in Study 2: Individuals scoring high in psychopathy have been found to generally feel less need to deliberate (Newman, 1987), or collaborate (e.g., with experimenters; Book et al., 2006), look for exciting new challenges with concrete stakes, and
to have difficulty putting themselves in an imaginary situation that is not directly applicable to them (Miller & Lynam, 2001; Miller, Lynam, Widiger, & Leukefeld, 2001). It is not surprising that these individuals would not be motivated to engage in a non-incentivised hypothetical insurance claim task. Conversely, in Study 2, there were clear incentives to claim higher amounts, which could have made fibbing much more attractive for individuals high in psychopathy. However, we also note that, due to issues of mild multicollinearity, the results between the individual DT traits and fibbing should be interpreted with caution. Given our findings, it is possible that the DT traits should be viewed as a uniform construct, and the observed differences between the individual traits might be unreliable.

While we could not conclusively show that the effect of dark triad traits on willingness to commit insurance fraud differs depending on situational factors, our results allude to a difference between conditions where insured items are broken in anger or while drunk. Namely, individuals with high psychopathic tendencies were somewhat more willing to commit insurance fraud if they had broken the items while angry, as compared with while drunk or by pure accident. Future research should look into how situational and affective components in fraudulent behaviour interact with the dark triad traits; for example, it is possible that situations that elicit anger or frustration increase the likelihood of fraudulent behaviour especially in individuals with high psychopathy. This is in line with recent research showing that being rejected in conjunction with negative emotions increases dishonest behaviour (van Der Zee et al., 2016).

There were a few limitations in our studies. Despite our best efforts, the stakes for our participants were still relatively low. Our participants knew they were only taking part in an experiment, and thus we cannot claim that they behaved in a manner they would when they would actually be filling out insurance claims for personally owned household items. However, without having access to actual insurance claim data (which is technically not
feasible for privacy reasons), our approach is arguably as realistic as possible. Moreover, in our studies, insurance type was limited to home insurance with respect to the dependent variables. Our future research plans include evaluating more types of insurance (for example automotive, and health). Insurance fraud in those contexts is more elaborate, as shown by, for example (Dionne et al., 2009); but not trivial to implement in experimental setting. Finally, fraudulent insurance claims are a relatively low-probability event (which was also confirmed in our experiments). This calls for relatively large sample sizes and often results in skewed variable distributions. However, analysing low probability events is still possible via non-parametric, bootstrapped, or logistic regression models, as we did in the present article. Finally, our insurance claim tasks and dependent variables differed slightly between our Studies; in Study 2, we used a modified definition for “fibbing” due to the low amount of participants who fibbed in Study 1. This could in part explain the discrepancy of the results between our Studies. However, despite these differences, we found support for our hypotheses.

In conclusion, we showed that the DT traits are associated with insurance claiming and fibbing behaviour, both individually and as a uniform construct. Our results contribute to extant knowledge on what types of individuals commit fraud and why. We also showed that the dark triad as a uniform trait, instead of individual DT traits, shows the best predictive power in an insurance fraud context.

Acknowledgements
We are thankful to professors Ross Anderson and Jeff Yan for valuable feedback during the design and preparation of our studies.
Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

Preparation of this manuscript was supported by an Engineering and Physical Sciences Research Council grant titled The Deterrence of Deception in Socio-Technical Systems (EP/K033476/1).
References

https://www.abi.org.uk/~/media/Files/Documents/Publications/Public/2015/Statistics/Key%20Facts%202015.pdf

Author Bio

The security group at the Computer Laboratory, Cambridge University is interested in the intersection of computers and security. I personally research human aspects of security, and online crime. My main research areas currently are: psychology of IT security (policy making, compliance with policies, effective intrusion deterrence techniques and individual differences across IT personnel, from unethical to ethical hackers, administrative and compliance officers, and others), and psychology of cyber crime (why do people comply with fraudulent requests, what behaviour modification techniques are used by scammers, how to improve resistance to crime). The present paper speaks to the issue of fraud deterrence, specifically to the deterrence of insurance fraud. To understand how to approach this question, we need to know a bit more about the potential offenders and their individual differences. At the same time, we need to be familiar with the approaches employed by the insurance industry.

dr. David Modic
The dark triad and willingness to commit insurance fraud (supplementary materials)

David Modic
Jussi Palomäki
Marianna Drosinou
Michael Laakasuo

Corresponding author email address: jussi.palomaki@helsinki.fi

University of Helsinki, Department of Digital Humanities, Cognitive Science

University of Helsinki, 00014 Helsingin yliopisto, Finland
1. Pictures of the insured items

HIGH VALUE ITEMS

- China set (US $2000)
- Mirror (US $1600)
- Wall clock (US $1000)

LOW VALUE ITEMS

- iPhone 6 (US $500)
- Vase (US $300)
- Lamp (US $160)

Note. Item values are shown in brackets.
2. Insurance claim web form fields and outlook

Below is a textual explanation of the seven fields used in the insurance claim web form. Figures S1 is a screenshot from the actual claim form participants saw.

1) Welcome -text

2) Pre-filled information: name of claimant ("withheld"), age (populated based on the participant’s answer given earlier in the survey), case number (a random number), insurance premium type ("regular payee, auto renewal, January 2016"), date of claim (populated based on the current date), insured object (name and a small picture shown), claim status ("not yet submitted")

3) “What happened: Small damage to the item / Large damage to the item / Destruction of item / Item was stolen”

4) “How much do you wish to claim (in US $)?” The amount had to be between 0 and 9999. Participants were reminded of the deductible of 10%, and shown the actual sum they would be paid (i.e. \[\text{claim amount}\times0.9\]), if the claim was approved

5) “Did you or the person who damaged the item do any of the following: Break or damage the insured item under the influence of mood altering medication, drugs or alcohol? (Yes / No); Break or damage the insured item on purpose (for example out of anger; Yes / No)?” This field was hidden if participants had selected “Item was stolen”; see 3 above.

6) Thank you -text

7) Confirmation field (“Is the information you provided above, correct? Yes / No”)

Figure S1. Screenshots of the top (left) and bottom (right) halves of the claim form used in our studies. The form was displayed on one page.
3. Other measured covariates

3.1 Susceptibility to Persuasion -II (StP-II) scale

The 30-item (brief) Susceptibility to Persuasion scale (bStP-II, Modic, Anderson & Palomäki, 2018; Modic & Lea, 2013) was included in our studies as an exploratory measure. BStP-II has 10 subscales with three items each: Premeditation, Need for consistency, Sensation seeking, Self-control, Social influence, Similarity, Risk preferences, Attitudes towards advertising, Need for cognition, and Need for uniqueness. Example items are “I achieve a sense of belonging by purchasing the same products and brands that others purchase.” (Social influence), and “I do certain things that are bad for me, if they are fun.” (Self-control). Participants evaluated their agreement with all items on Likert 1-7 scales. The details and the theory behind the StP-II and its subscales are thoroughly explained by Modic, Anderson, and Palomäki (2018), and will not be discussed in detail here. Essentially, StP-II is an amalgamated scale measuring individual susceptibility to different persuasive techniques across various contexts.

3.2 Attitudes towards insurances

Six items were adapted from an American national study of consumer attitudes about insurance crime (Coalition Against Insurance Fraud, 2008): 1) “Insurance companies make too much money at the consumer’s expense.”; 2) “Nobody tells the whole truth on their insurance applications.”; 3) “People are only looking to get a fair return on all the insurance premiums they’ve paid.”; 4) “If insurance companies treated people with more respect, people wouldn’t lie to them as much.”; 5) “People are forced into lying to insurance companies because it’s the only way to get the coverage they are owed.”; and 6) “Insurance premiums continue to increase
regardless of one’s claims history.”. All items were evaluated on Likert 1 (Completely disagree) to 7 (Completely agree) scales.

4. Deterrence conditions

Both studies in the main article included an additional experimental manipulation that was not reported. The manipulation was aimed at deterring the participants from “fibbing” in the claim forms. Details for this manipulation are presented below. Note that the results presented in the main article were robust to adding these manipulations in the statistical models as fixed factors of no interest; there were also no significant interactions between the covariates of interest (demographics and the DT traits) and the deterrence manipulations.

Before the insurance claim task in both studies, participants were randomly assigned into one of three experimental conditions (deterrence methods): 1) Control condition; 2) Watching eyes condition, with a picture of a pair of human eyes (obtained from Bateson et al., 2006, fixed on the top right side of the screen, clearly visible but not obstructive) IP monitoring condition, with a white box with the text “You are being monitored. Your computer has the following Internet Protocol (IP) address: [IP address]” located and sized as the image of eyes in the Watching eyes condition. The results concerning these manipulations will be reported elsewhere.
4. Vignettes

4.1 Angry

Mirror

It is evening. You are coming home. You have just found out your trust has been abused and are very upset. After finding out that a friend betrayed you, you walked aimlessly around town, getting angrier and angrier. Nobody deserves to be treated like you were. After a while you find yourself in front of your door. Your hands shake when you try to insert the key into the lock. After a few tries you manage and enter.

In your hallway, there is a mirror on the wall. You step closer and really look at yourself. You are pale and snarling. Even the mirror seems to be mocking you. You take the keys in your hand and hurl them as hard as you can at your face in the mirror. The keys hit dead-on. The mirror cracks and big shards fall on the floor. You scream. Finally, you go into the bedroom, where you lay on the bed and stare at the ceiling. After a while you drift off.

When you wake up, you are calmer. All of a sudden you remember the mirror. You remember that you had purchased it for $1300 from a discount store, and insured it a few months ago. The estimate valuation you'd given the insurance company for the mirror was $1600. They agreed with this estimate.

China set

It was a stressful day, and as you arrive home, you are going through the day's events in your head. Some people should just be fired. You still can't believe that this...this colleague... did something so vile to you. After years of respect and trust, this is what they do to you? Screw them.

You are fuming and decide you'll get something to eat from the kitchen. You make a sandwich and reach for a plate. Here is the china set you got as a present from them. Does everything need to remind you of the betrayal? No, you will not stand for it. You grab a stack of china plates and throw them on the ground where they shatter. You grab the sandwich and go into the other room where you eat in silence.
You slowly calm down and turn on the TV. You watch something mindless and slowly drift off. When you wake up, you see crumbs all over yourself. Oh yeah, you didn't use the plate because it reminded you of the backstabber. The china set was worth something, though. You remember your ex-friends said they had purchased it for $1600 from a discount warehouse you know well. Luckily, you had recently insured it. The estimate valuation you'd given the insurance company for the china set was $2000. They agreed with this estimate.

Wall clock

You and your special someone are at home in the evening. They just crossed the line, the one line you don't cross. They threw that thing in your face, the thing that you made clear should never be discussed again. Your blood pressure rises, you are angrier than you have been in a long time and they are screaming about the thing. You just want them to shut up. You pick the first thing that comes under your hand, a holiday brochure, and throw it at them. You won't be going on any holidays together anyway. Your "loved one" dodges and the brochure hits a wall clock behind them. The wall clock falls on the floor and breaks.

You both stop for a second. And then another second. You realize how silly this whole thing is. You smile and then they smile. You both start laughing. Your lover stands up and looks at you provocatively and goes towards the bedroom. You follow, shedding clothes as you go.

In the morning you both wake up, feeling relaxed and happy. Your partner turns to you and says: "Hey sleepyhead. Sorry about the argument last night. I didn't mean it." They smile. You smile back. And then they frown. "Didn't we break something yesterday?" You say: "Yeah, the clock. I think we bought it for $800 from that outlet store around the corner." You also remember that the clock was insured, and that the estimate valuation you'd given the insurance company for the clock was $1000. They agreed with this estimate.

4.2 Drunk

Mirror

It is evening. You are coming home. You just had some bad news of a personal nature and are trying to get to grips with it. After you found out, your friends took you to a bar, saying that you should not be alone at a time like this. You spent the early evening there swapping war stories and having a few drinks.

You find it hard to open the front door. After a few tries you manage and enter. In the hallway, there is a mirror on the wall. You step closer and all of a sudden you lose your balance. You try to steady yourself, put one hand in front of you and brush the mirror. It slips from the wall and shatters. You look at it blearily and wander towards the bedroom, where you sleep it off.

When you wake up, you have a hangover. All of a sudden you remember the mirror. You remember that you insured it a few months ago, having originally bought it for $1300 from a discount store. The estimate valuation you'd given the insurance company for the mirror was
$1600. They agreed with this estimate.

China set

It was a stressful day, and you arrive home slightly tipsy. You've had a few drinks, celebrating a friend's birthday. As you come through the door, you realize you're hungry. You want a sandwich or something.

You open the cabinet and clumsily grab the stack of plates. You don't want the top one, as that one is dusty. You balance the plates in your hand and lose balance. You grab the kitchen counter with one hand but also try to stabilise yourself with the hand that holds the china plates, so you drop them. They shatter. You take the food without the plate into the other room, where you fall asleep.

You wake up bleary and see the remains of the food in your lap. You wonder why you didn't use the plate. And then it all comes back to you. The plates belonged to a china set worth $1600 -- you had bought it from a discount warehouse. Luckily you had also insured the china set. The estimate valuation you'd given the insurance company for the china set was $2000. They agreed with this estimate.

Wall clock

You and your special someone are at home in the evening. You had a bottle or so of wine and great things are in store. You joke and talk a bit too loudly, but who cares. You pick a napkin and throw it at your partner. They do the same. This will not go unpunished! You pick a pillow from the sofa and throw it at them. They dodge and you hit a wall clock behind them. It falls on the floor and breaks.

You both stop for a second and giggle. Hilarious. But wait a minute, isn't the wall clock expensive? Eh, you'll deal with it in the morning. You follow your lover into the bedroom, shedding clothes as you go.

In the morning you both wake up, feeling relaxed and happy. Your partner turns to you and says: "Hey sleepyhead. Thank you for this. I love you." They smile. You smile back. And then they frown. "Didn't we break something yesterday?" You say: "Yeah the clock. I think we bought it for $800 from that outlet store around the corner." You also remember the clock was insured, and that the estimate you gave insurance company for the value of the clock was $1000. They agreed with this estimate.

4.3 Control

Mirror

It is evening. You are coming home. It is just a regular day. On a spur of the moment, you spent most of the afternoon just wandering around town. You were taking stock. Nothing out of the
ordinary is going on, life is ok.

After a while you find yourself in front of your door. You insert the key into the lock and jiggle it. You need to look at the lock when you have the time. In the hallway, there is a mirror on the wall. You step closer and all of a sudden see yourself in it. You smile at yourself and brush past it. It seems that the fittings are loose. As your arm brushes it, you dislodge it and it falls on the ground and shatters.

"Seven years of bad luck" you think to yourself and smile. Oh well, nothing to do now but sweep it up. You remember that you bought the mirror for $1300 from a discount store, but also insured it a few months ago. The estimate valuation you'd given the insurance company for the mirror was $1600. They agreed with this estimate. You will have to see to this in the morning.

China set

It was an ordinary day, and as you arrive home, you are going through the events of the day in your head. Things are going ok, everything is as planned.

You realize you are hungry and decide you'll make yourself a sandwich. On a spur of the moment you decide to treat yourself and eat it from your best china. Well, why not? It should be used, right? You open a cabinet and reach for the china plates and have a couple in your hand as your pet gets between your legs. You lose balance and flail a bit. The china flies out of your hand and shatters on the floor.

Oh well, accidents happen. And this china was worth something -- you had bought it for $1600 from a discount warehouse. Luckily it was insured. The estimate valuation you'd given the insurance company for the china set was $2000. They agreed with this estimate.

Wall clock

You and your special someone are at home in the evening. You are having a nice meal and are settling in to watch a movie. You discuss the holiday that you are planning on going together and browse Netflix for a movie to watch.

Your partner sits on a sofa and asks you to bring some snacks from the kitchen. You do so and as you come back, the draft slams the door to the living room. The impact is hard enough to dislodge the nail where the wall clock is hanging behind the couch. The clock falls on the floor and it breaks.

You look at each other, shocked, but then realize it was only the draft. You pick up the clock and leave it on the table for tomorrow. Your significant other says that you may need to scrap the holiday plans as the clock was expensive -- you had bought it for $800 from a local outlet store --, and you reply: "Don't worry about it, it is insured. We'll deal with it in the morning". You also remember that the estimate valuation you'd given the insurance company for the clock was $1000. They agreed with this estimate.
5. Additional analyses

In our manuscript, we have analysed fibbing as a dichotomous variable (whether participants fibbed or not in one or more of the claims they made). Here, we present some additional analyses where we have treated claim sizes as a continuous measure. This was possible only for the Study 2 data due to significant zero-inflation in the Study 1 dependent variable (in Study 1, 70.4% of the participants did not fib at all).

In Study 2, we used the mean of all claim sizes across all items as an additional dependent variable (DV; \(M = 1293, SD = 347 \)). This variable could be treated as continuous, although it is slightly more difficult to ascertain at which point claims could be considered as “fibbing”: on some occasions participants under-claimed for one item and over-claimed for another, which would result in a “non-fibbing on average” claim size. Nonetheless, the uniform DT scale was a positive predictor of mean claim sizes \(F(1, 450) = 4.1, B = 62.2, p = .041 \): for every one unit increase in the overall DT score (which ranged between 1 and 5), average claim sizes \(M = $1293 \) increased by $62.

Below, we also present the cross-tabulation and chi-squared test analysis of the dichotomous “fibbed” variable across the Angry, Drunk, and Control vignette conditions. This analysis shows that participants in the Angry and Drunk conditions generally fibbed less frequently than those in the Control condition \(\chi^2(2) = 11.4, p = .003 \).

Table A1. Cross-tabulation for the counts (proportions within Condition in brackets) across the three conditions (Angry, Drunk, Control), and the dichotomous “fibbed or not” variable.

<table>
<thead>
<tr>
<th>Fibbed or not</th>
<th>Condition</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Angry</td>
<td>Drunk</td>
<td>Control</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Did not fib</td>
<td>155 (70.8%)</td>
<td>161 (64.1%)</td>
<td>127 (28.7%)</td>
<td>443</td>
<td></td>
</tr>
<tr>
<td>Fibbed</td>
<td>64 (29.2%)</td>
<td>90 (35.9%)</td>
<td>102 (44.5%)</td>
<td>256</td>
<td></td>
</tr>
</tbody>
</table>
Finally, we calculated the number of times participants fibbed across all items. This variable ranged from 0 (did not fib) to 3 (fibbed for each item). We used this variable as a DV, with the categorical “condition” variable (Angry, Drunk, Control) as well as the uniform DT variable as predictors. The model is statistically significant ($F(3, 448) = 5.4, p = .001$, adj. $r^2 = .03$), with the uniform DT positively predicting number of times fibbed ($B = .35, t = 3.6, p < .001$).
6. References

Modic, D