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Abstract: Production Possibility Set (PPS) is defined as the set of all inputs and out-
puts of a system in which inputs can produce outputs. In Data Envelopment Analysis 
(DEA), it is highly important to identify the defining hyperplanes and especially 
the strong defining hyperplanes of the empirical PPS. Although DEA models can 
determine the efficiency of a Decision Making Unit (DMU), but they cannot present 
efficient frontiers of PPS. In this paper, we propose a new method to determine all 
strong efficient (Pareto-efficient) DMUs and strong defining hyperplanes of the PPS 
with constant returns to scale including the Pareto-efficient DMUs. Furthermore, 
we apply the newly proposed method to find the normal vectors or gradient of the 
strong defining hyperplanes of the PPS including strong efficient DMUs which are 
under evaluation. Consequently, the equations of these hyperplanes are determined. 
To illustrate the applicability of the proposed method, some numerical examples are 
finally provided. Our method can be easily implemented using existing packages for 
operation research, such as GAMS.
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1. Introduction
Data Envelopment Analysis (DEA) is a non-parametric method which is used for measuring the relative 
efficiency of a set of Decision Making Units (DMUs). In order to measure the relative efficiency of DMUs, 
input-oriented or output-oriented CCR or BCC envelopment models can be used (Banker, Charens, & 
Cooper, 1984; Charnes, Cooper, & Rhodes, 1978). Of course, there are some other models in DEA by 
which the relative efficiency of the DMUs can be measured (Cooper, Li, Seiford, & Tone, 1999).

The main problem in standard models of DEA is the presence of weak efficient frontiers. These 
frontiers are identified by adopting zero weights for the input and output factors. Although due to 
the compensatory structure of these models, there would be many alternative optimal solutions and 
the zero weights might go unnoticed. Therefore, identification and determination of strong defining 
hyperplanes, or in other words, the hyperplanes with corresponding strong efficient frontiers become 
highly significant.

This issue was first raised by Charnes et al. (1978). Yu Wei, Brockett, and Zhou, (1996) analysed the 
structural properties of PPS efficiency frontiers in a generalized DEA model. By using their method, 
all DMUs on a hyperplane can be identified, so that an analysis on DEA hyperplanes may be offered 
(Yu et al., 1996). Jahanshahloo, Hosseinzadeh Lotfi, ZhianiRezai and Rezai Balf (2007) presented an 
algorithm for finding PPS strong defining hyperplanes. Although their method was based on pure 
mathematics, by using the hyperplanes identified in this method, all members or elements refer-
ence set of a DMU can be determined (Jahanshahloo et al., 2007). Another different method is intro-
duced by Jahanshahloo, Shirzadi and Mirdehghan (2009). In their paper, a three-stage algorithm is 
introduced which using the solutions of additive model and multiplier form of BCC model, the strong 
efficient hyperplanes are identified (Jahanshahloo et al., 2009). Amirtaymouri and Korrostami (2012) 
found all linearly independent strong defining hyperplanes (LISDHs) of the PPS passing through a 
specific DMU. To do so, they defined corresponding to each efficient unit, a perturbed inefficient unit 
and by solving at most m + s linear programs, identified the hyperplanes (Amirteimoori & 
Kordrostami, 2012). All of the studies mentioned above were conducted using radial models. There 
are also some studies which used non-radial models, especially Slack Based Measure (SBM) (Aparicio 
& Pastor, 2013; Hadi Vencheh, Jablonsky, & Esmaeilzadeh, 2015; Tone & Tsutsui, 2010).

In this paper, for each given DMU of TC, the corresponding problem in the offered model is formed, 
and by solving it, the Pareto-efficient or nonPareto-efficient nature of the DMU under evaluation is 
determined. If the DMU under evaluation is Pareto-efficient, then the production possible set, TC, 
strong defining hyperplanes passing through the origin which including the pareto-efficient DMU 
under evaluation can be identified. Also, the normal vectors and equations of these defining hyper-
planes can be characterized.

2. CCR model and defining hyperplanes
Suppose we have n DMUs, where each DMUj (j=1, ...,n), produces the same s outputs yrj(r=1,...,s), and 
using the same m inputs xij (i=1,...,m). The PPS corresponding to these DMUs are defined as follows:

In fact, linear combinations of inputs and outputs form the frontier of PPS. These combinations are 
indeed the supporting (or defining) hyperplanes of the PPS. CCR model which first proposed by 
Charnes et al. (1978) is developed by Tc in the following format:

(1)TC = {(x, y)| x ≥

n∑

j=1

�jxj , y ≤

n∑

j=1

�jyj , �j ≥ 0, j = 1,… ,n}.
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where xip (i=1, ...,m) and yrp (r=1, ...,s) are the inputs and outputs of the unit under evaluation, respec-
tively. This model is called the envelopment form of the CCR model. The corresponding dual model 
of (2) is as follows:

Optimal solutions of model (3) are corresponding to the coefficient of the supporting hyperplanes of 
the PPS. These hyperplanes are identified by the following equations:

where v∗i  (i=1,..., m) and u∗r  (r=1,..., s) are the optimal solutions of model (3). Suppose that 
U∗

T

= (u∗
1
, … , u∗s ) and V∗

T

= (v∗
1
, … , v∗m). If 

∑s

r=1 u
∗

r yrp = U
∗
T

Yp = 1 and the values for all coeffi-
cients are non-zero, then DMUp is called Strong Efficient or Pareto Efficient and a part of the strong 
efficiency frontier is made with these coefficients. These hyperplanes are called strong defining hy-
perplanes. If 

∑s

r=1 u
∗

r yrp = U
∗
T

Yp = 1 and in some optimal solutions (3) some variables to be zero, 
then DMUp is called Weak Efficient or nonpareto Efficient. Weak efficiency occurs when the optimal 
objective of (3) is one and at least one coefficient of each optimal solution is zero. These weights 
identify the weakly efficient hyperplanes of the PPS. The efficient frontier is the set of all points (ac-
tual or virtual) with efficiency score equal to unity.

3. A model for determining defining hyperplanes
As mentioned in the previous section, the PPS corresponding to the CCR model is a set in the form of 
Tc. This set is a set with m + s dimension. The defining hyperplanes of Tc are the sets with a dimen-
sion of m + s − 1. Therefore, if a DMU is lies on a face with m + s − 1 dimension, then this DMU will 
be lie on one of the hyperplanes forming the frontier of the PPS. Equations for these hyperplanes can 
be obtained through solving model (3) and via (4). However, since Model (3) has alternative optimal 
solutions, without determining all optimal solutions, it is not possible to ensure that the hyperplane 
on which the DMU under evaluation is located is strong efficient.

Since the defining hyperplanes of Tc are m + s − 1 dimensional sets, we can find m + s − 1 linear-
ly independent vector of Tc in such a way that every one of these vectors becomes orthogonal to 
normal vector of these hyperplanes. Suppose these vectors are in the form of [dkx, d

k
y]
T in which dkx is 

(2)

min �

s.t

�xip −

n∑

j=1

�jxij ≥ 0 i = 1,… ,m

n∑

j=1

�jyrj ≥ yrp r = 1,… , s

�j ≥ 0 j = 1,… ,n

(3)

max

s∑

r=1

uryrp

s.t
m∑

i=1

vixip = 1

s∑

r=1

uryrj −

m∑

i=1

vixij ≤ 0 j = 1,… ,n

ur ≥ 0, vi ≥ 0 r = 1,… , s , i = 1,… ,m

(4)
s∑

r=1

u∗r yrj −

m∑

i=1

v∗i xij = 0, j = 1,… ,n
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m-vector, dky is s-vector and [dkx, d
k
y]
T is (m + s)-vector. If we consider the normal vector defining 

hyperplanes of Tc as (−V∗
T

, U
∗
T

) which is obtained from solving model (3), then we must have :

Suppose a DMU is located on a number defining hyperplanes of Tc. We know that on each of the 
defining hyperplanes, there are infinite numbers of vectors. From these infinite numbers of vectors, 
we select the vectors that along with the other selected vectors on the other hyperplanes binding to 
the DMU under evaluation form m + s − 1 linearly independent vectors.

The aim of selecting the above-mentioned vectors is to find a direction for movement from the 
DMU under evaluation to these defining hyperplane in such a way that it is possible to stay on Tc. In 
order to locate such directions, the following model is offered:

where � a non-Archimedean number and 1m and 1s are m-vector and s-vector respectively, with 
each component equal to one. 𝜀k > 0(k𝜖{1,… ,m + s − 1}) is a small number where we move 
from the DMU under investigation in the direction of vector (dkx, d

k
y)
T
= (dkx

1

,… , dkxm
, dky

1

, … , dkys
)
T 

with a step length of �k.

In model (5), constraints (5-a) and (5-b) ensure that the movement is in Tc. Constraints (5-c) are 
positioned in such a way that vectors (dkx, d

k
y)
T are orthogonal to the normal vector of the hyper-

plane on which the DMUp under evaluation is located. In fact, constraints (5-c) can be as many as 
the number of the vectors on the mentioned hyperplane, but we will show later that these vectors 
have a special structure, and only m + s − 1 linearly independent vectors are enough for solving 
model (5) as shown below:

Suppose that

Then according to constraints (5-c), it is easily possible to select (m + s)-component vectors Dkab in 
the following manner:

(−V
∗T
, U

∗T
) ×

(
dkx
dky

)
= 0

(5)

max z = UTyp

s.t
n∑

j=1

�jxj ≤ xp + �kd
k
x k = 1,… ,m + s − 1 (5 − a)

n∑

j=1

�jyj ≥ yp − �kd
k
y k = 1,… ,m + s − 1 (5 − b)

UTdky − V
Tdkx = 0 k = 1,… ,m + s − 1 (5 − c)

VTxp = 1

UTyj − V
Txj ≤ 0 j = 1,… ,n

U ≥ 1s ⋅ �

V ≥ 1m ⋅ �

�j ≥ 0 j = 1,… ,n

Dkab =

[
dkx
dky

]



Page 5 of 11

Rafati-Maleki et al., Cogent Mathematics & Statistics (2018), 5: 1447222
https://doi.org/10.1080/23311835.2018.1447222

where number 1 is the a-th (a�{1,… ,m} row and tab =
va

ub
 is the (m + b)-th (b�{1,… , s} row of Dkab 

vector, and the value of the other components are zero. With this choice, the total of the possible 
cases for vector Dkab will be equal to m × s.

Now, it is enough from the m × s constructed vectors Dkab, we choose m + s − 1 linearly independ-
ent vectors and set them in model (5). By solving it, the strong defining hyperplanes corresponding 
to DMUp is achieved.

By determining dkx and dky vectors in the form of Dkab in (6) and choosing m + s − 1 linear independent 
vectors of it and by inserting the selected linear independent vectors in model (5), the constraint 
(5-c) will be a redundant constraint. Therefore, by inserting m + s − 1 selected linearly independent 
vectors in model (5), the constraints (5-c) can be omitted and instead it constraints tab × ub − va = 0 
contracted and solved the obtained model.

Theorem 1  From m × s vectors with (m + s)-components defined as (6), one can choose m + s − 1 
linearly independent vectors.

Proof  By using m × s vectors with (m + s)-components obtained from (6), matrix D where is an 
(m + s) × (m × s) matrix, we form as follows :

By inserting

matrix D can be written in the following manner:

(6)Dkab =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

⋮

1

⋮

0

……

0

⋮

tab
⋮

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠m+s

(7)D =

[
Dk
11

Dk
12
⋯Dk

1s Dk
21
⋯Dk

2s⋯Dkms

]

(m+s)×(m×s)

(8)tab =
va
ub

(a = 1,… ,m, b = 1,… , s)

(9)D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 1 ⋯ 1 0 0 ⋯ 0 ⋯⋯ 0 0 ⋯ 0

0 0 ⋯ 0 1 1 ⋯ 1 ⋯⋯ 0 0 ⋯ 0

0 0 ⋯ 0 0 0 ⋯ 0 ⋯⋯ 0 0 ⋯ 0

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋯ ⋮ ⋯⋯ ⋮ ⋮ ⋯ ⋮

0 0 ⋯ 0 0 0 ⋯ 0 ⋯⋯ 1 1 ⋯ 1

⋯ ⋯ … ⋯ ⋯ ⋯ … ⋯ …… ⋯ ⋯ … ⋯ .
v
1

u
1

0 ⋯ 0
v
2

u
1

0 ⋯ 0 ⋯⋯

vm

u
1

0 ⋯ 0

0
v
1

u
2

⋯ 0 0
v
2

u
2

⋯ 0 ⋯⋯ 0
vm

u
2

⋯ 0

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋯ ⋮ ⋯⋯ ⋮ ⋮ ⋯ ⋮

0 0 ⋯

v
1

us
0 0 ⋯

v
2

us
⋯⋯ 0 0 ⋯

vm

us

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
(m+s)×(m×s)
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Now it is enough to show that:

In order to prove (10), the following cases are considered.

Case 1: If m = 1 and s = 1, then matrix D is a 2 × 1 matrix, and in this case, the accuracy of state-
ment (10) is obvious.

Case 2: If ( m = 1 and s ≥ 2 ) or ( s = 1 and m ≥ 2 ) since in this case m × s = m + s − 1 as well 
as the number of rows in the resulting matrix D is equal to the number of columns plus one, then by 
omitting any row of matrix D, the determinant of the remaining matrix which is equal to 
(m + s − 1) × (m + s − 1) would not be equal to zero, and, as a result, Rank(D)=m + s − 1, and so 
the statement (10) will be correct in this case as well.

Case 3: If m = 2 and s = 2, then Rank(D)=m + s − 1, since if the i-th row of this matrix is consid-
ered to be Ri, then we will have:

Therefore, the correctness of statement (10) is obvious.

Case 4: If m > 2 and s > 2, then since in this case m + s < m × s and

and

Therefore, it is obvious that Rank(D) ≠ m + s, and as a result the rank of matrix D can be at last 
m + s − 1. In order to prove Rank(D)=m + s − 1, we construct a matrix (m + s − 1) × (m + s − 1) 
such as D′ from matrix D in the following manner.

First consider the following matrix:

and by omitting row m + 1 from the above-mentioned matrix, the obtained matrix which is an 
(m + s − 1) × (m + s − 1) matrix is selected as matrix D′. It is now enough to show that |D′| ≠ 0.

We have:

It is obvious that |D′| ≠ 0. (since, according to model (5), U∗
> 0, V∗

> 0), and it completes the proof.

(10)Rank(D) = m + s − 1

(11)−

2∑

i=1

viRi +

2∑

j=1

ujR2+j = 0.

Rank(D) ≤ min{m + s, m × s} = m + s

(12)−

m∑

i=1

viRi +

s∑

j=1

ujRm+j = 0.

[
Dk
11

Dk
21

Dk
31

⋯ Dkm1 D
k
12

⋯ Dk
1s

]

(m+s)×(m+s−1)

|D�| =
vs−1
1

u
2
⋯us

×
|||||

Im 0

0 Is−1

|||||

|D�| =
vs−1
1

u
2
⋯us

× 1
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Note that in proving the above-mentioned theorem, the choice of matrix D′ from matrix D is not 
unique, and some other cases can be considered as well.

It should be mentioned that, we can choose m + s − 1 linearly independent vectors out of the 
available m + s component vectors of Zkab which are defined in the following manner:

where 1 is placed in the (m + b)-th (b�{1,… , s}) row and lab =
ub

va
 is placed the a-th (a�{1,… ,m}) 

row of the vector Zkab, and all of the other components are zero.

By considering possible cases in choosing m + s − 1 linearly independent vectors and putting 
them in the model (5), it can be normal vectors and equations all of PPS strong defining hyperplanes 
with constant returns to scale which including the strong efficient DMUs under evaluation, are 
determined.

4. Numerical examples

Example 4.1  Consider a system of seven DMUs as shown in Figure 1. Data is given in Table 1(see 
Cooper, Selford, & Tone, 2002). 

(13)Z
k
ab =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

⋮

lab
⋮

0

⋯⋯

0

⋮

1

⋮

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠m+s

Table 1. Data set for the numerical Example 4.1
DMU

A
DMU

B
DMU

C
DMU

D
DMU

E
DMU

F
DMU

G
DMU

F

x 2 3 3 4 5 5 6 8

y 1 3 2 3 4 2 3 5

Figure 1. Numerical Example 
4.1.
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The resulting strong defining hyperplane by Cooper et al. (2002) is as follows.

Since m = 1 and s = 1, So m + s − 1 = 1. The linearly independent vector, �1
11

, is selected using (13) 
in the following manner:

or supposing l1
1
=

u
1

v
1

, we have:

By inserting �1
11

 in model (5), each of the DMUs in Table 1 is evaluated supposing � = 0.0001 and 
�
1
= 0.00001. The obtained results are shown up to seven decimal digits in Table 2.

The obtained results in Table 2 show that DMUB is Pareto-efficient and located on PPS strong de-
fining hyperplane with constant returns to scales obtained from the seven DMUs of A, B, C, D, E, F, G 
and H. By examining at column DMUB in Table 2, we see that the obtained normal vector

is the normal vector of defining hyperplane including DMUB and origin. Due to the obtained normal 
vector and considering (4), the equation of the strong defining hyperplane including Pareto efficient 
DMUB is in access. We have:

and therefore the equation strong defining hyperplane can be written in the following manner: (The 
same strong defining hyperplane H is in Figure 1).

According to the obtained results in columns DMUs A, C, D, E, F, G and H, we observe that DMUs A, C, 
D, E, F, G and H are not Pareto-efficient or strong efficient.

As can be seen, the results of the proposed model is same as the Cooper et al. (2002).

Example 4.2  Consider a system of four DMUs as shown in Figure 2. Data is given in Table 3 (see 
Jahanshahloo et al., 2007). 

Solution: Since m = 2 and s = 1, then m + s − 1 = 2 + 1 − 1 = 2. The two linearly independent 
vectors of D1

11
 and D2

21
 are selected using (6) in the following manner:

H: y − x = 0

(14)Z
1

11
=

(
d1x

1

d1y
1

)
=

(
u
1

v
1

1

)

(15)Z
1

11
=

(
l1
1

1

)
.

(−v
1
, u

1
) = (−0.3333333, 0.3333333)

0.3333333y − 0.3333333x = 0.

y − x = 0.

Table 2. The obtained results based on model (5): Data set for the numerical Example 4.1
Variables DMU

A
DMU

B
DMU

C
DMU

D
DMU

E
DMU

F
DMU

G
DMU

H

z 0.5000000 1.0000000 0.6666666 0.7500000 0.8000000 0.4000000 0.5000000 0.6250000

u
1

0.5000000 0.3333333 0.3333333 0.2500000 0.2000000 0.2000000 0.1666667 0.1250000

v
1

0.5000000 0.3333333 0.3333333 0.2500000 0.2000000 0.2000000 0.1666667 0.1250000

l1
1

1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
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or supposing ta
1
=

va

u
1

 , (a = 1, 2) , we have:

By inserting vectors D1
11

 and D2
21

 in model (5), each of the DMUs in Table 3 are evaluated supposing 
� = 0.00001 and �

1
= �

2
= 0.000001 . The obtained results up to seven decimal digits are shown 

in Table 4.

The obtained results in Table 4 show that DMUA, DMUB and DMUC are pareto-efficient and are lo-
cated on PPS defining hyperplanes with constant returns to scales obtained from the four DMUs of 
A, B, C and D. By looking at columns DMUA and DMUB in Table 4, we observe that the obtained normal 
vector

is the normal vector of defining hyperplane including DMUA, DMUB and origin. Due to obtained nor-
mal vector and considing (4), the equation of the strong defining hyperplane including pareto-effi-
cient DMUs A , B and origin is in access. We have:

(16)D
1

11
=

⎛
⎜
⎜
⎜
⎝

d1x
1

d1x
2

d1y
1

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

1

0
v
1

u
1

⎞
⎟
⎟
⎟
⎠

, D
2

21
=

⎛
⎜
⎜
⎜
⎝

d2x
1

d2x
2

d2y
1

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

0

1
v
2

u
1

⎞
⎟
⎟
⎟
⎠

(17)D
1

11
=

⎛
⎜
⎜
⎝

1

0

t1
1

⎞
⎟
⎟
⎠
, D

2

21
=

⎛
⎜
⎜
⎝

0

1

t2
1

⎞
⎟
⎟
⎠

(−v
1
, −v

2
, u

1
) = (−0.3333333, −0.1666667, 1.0000000)
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2
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Table 3. Data set for the numerical Example 4.2
DMU

A
DMU

B
DMU

C
DMU

D

x
1

1 2 5 6

x
2

4 2 1 5

y
1

1 1 1 1

Figure 2. Numerical Example 
4.2.
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and therefore the equation strong defining hyperplane can be written in the following manner:

Similarly, by considering the column DMUc, the equation of the strong defining hyperplane includes 
pareto-efficient DMUs B, C and origin can be obtained as follows:

According to the obtained results in column DMUD, we observe that DMUD is not pareto-efficient.

5. Conclusion
This paper proposed a method to evaluate DMUs and find all Pareto-efficient DMUs and strong defin-
ing hyperplanes of the PPS with constant returns to scale including the Pareto-efficient DMUs. The 
proposed model uses the concept of the normal vectors of the hyperplanes instead of determining all 
optimal solutions for the multiplicative form of the CCR model and specifying positive weights. In the 
present paper, by only solving one problem for each DMU using model (5), the Pareto-efficient DMUs, 
as well as the normal vectors and equations strong defining hyperplanes of the PPS with constant re-
turns to scale including the Pareto-efficient DMUs under evaluation, are determined. However, in the 
documented papers, for example in Jahanshahloo et al. (2009), just the strongly efficient hyperplanes 
are identified by offering a three-step algorithm and by solving the additive and multiplicative of the 
BCC form, or in another example such as Amirteimoori and Kordrostami (2012), by solving m + s linear 
programming problems, only the defining hyperplanes binding in a given DMU are determined.

Note that the model (5) is a non-linear model, and so one may modify it in such a way to be a 
linear model.
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