Finiteness properties of generalized local cohomology modules for minimax modules

Sh. Payrovi*, I. Khalili-Gorji† and Z. Rahimi-Molaei ‡

Abstract: Let R be a commutative Noetherian ring, I an ideal of R, M be a finitely generated R-module and t be a non-negative integer. In this paper, we introduce the concept of I, M-minimax R-modules. We show that $	ext{Hom}_R(R/I, H^i_t(M, N)/K)$ is I, M-minimax, for all I, M-minimax submodules K of $H^i_t(M, N)$, whenever N and $H^i_t(M)$, $H^i_{t-1}(M)$, \cdots, $H^i_{t-r}(M)$ are I, M-minimax R-modules. As consequence, it is shown that $\text{Ass}_R H^i_t(M, N)/K$ is a finite set.

Keywords: generalized local cohomology; minimax module

2000 Mathematics subject classifications: Primary 13D45; Secondary 14B15; 13E05

1. Introduction

Let R be a commutative Noetherian ring, I an ideal of R, and M a finitely generated R-module. An important problem in commutative algebra is determining when the set of associated primes of the i-th local cohomology module is finite. In Huneke, (1992) raised the following question: If M is a finitely generated R-module, then the set of associated primes of $H^i_t(M)$ is finite for all ideals I of R and all $i \geq 0$. Singh (2000) and Katzman (2002) have given counterexamples to this conjecture. However, it is known that this conjecture is true in many situations; see Brodmann and Lashgari Faghi (2000), Brodmann, Rotthous, and Sharp (2000), Hellus (2001), Marley (2001). In particular, Brodmann and Lashgari Faghi (2000) have shown that, $\text{Ass}_R H^i_t(M)/K$ is a finite set for any finitely generated submodule K of $H^i_t(M)$, whenever the local cohomology modules $H^0_t(M)$, $H^i_t(M)$, \cdots, $H^i_{t-r}(M)$ are finitely generated. Next, Bahmanpour and Naghipour (2008) showed that, $\text{Hom}_R(R/I, H^i_t(M))/K$ is finitely generated for any minimax submodule K of $H^i_t(M)$, whenever the local cohomology modules $H^0_t(M)$, $H^i_t(M)$, \cdots, $H^i_{t-r}(M)$ are minimax. After this Azami, Naghipour, and Vakili (2008) proved that, $\text{Hom}_R(R/I, H^i_t(N))/K$ is 1-minimax for any 1-minimax submodule K of $H^i_t(N)$, whenever N is an 1-minimax R-module and the local cohomology modules $H^0_t(N)$, $H^i_t(N)$, \cdots, $H^i_{t-r}(N)$ are 1-minimax. The main result of this note is a generalization of above theorems for generalized local cohomology modules.

Recall that an R-module N is said to have finite Goldie dimension if N dose not contain an infinite direct sum of non-zero submodules, or equivalently the injective hall $E(N)$ of N decomposes as a finite direct sum of indecomposable submodules. Also, an R-module N is said to have finite I-relative...
Goldie dimension if the Goldie dimension of the I-torsion submodule $\Gamma_i(N) = \bigcup_{n \geq 1} (0:_{R}^{\infty}N)_{n}$ of N is finite. We say that an R-module N has finite I-M-relative Goldie dimension if the Goldie dimension of the R-module $H_{i}^{N}(M, N)$ is finite. An R-module N is called I-minimax if I-relative Goldie dimension of any quotient module of N is finite. We say that an R-module N is I, M-minimax if I,M-relative Goldie dimension of any quotient module of N is finite.

Precisely we show that, $\text{Hom}_{R}(R/I, H_{i}^{N}(M, N)/K)$ is I, M-minimax for any I, M-minimax submodule K of $H_{i}^{N}(M, N)$, whenever the R-module N and the local cohomology modules $H_{i}^{N}(N), H_{i+1}^{N}(N), \cdots , H_{i-1}^{N}(N)$ are I, M-minimax.

Throughout this paper, R will always be a commutative Noetherian ring with non-zero identity, I an ideal of R, M will be a finitely generated R-module and N an R-module. The i-th generalized local cohomology module with respect to I is defined by

$$H_{i}^{N}(M, N) = \lim_{n \in \mathbb{N}} \text{ Ext}_{R}^{i}(M/I^{n}M, N).$$

2. I, M-minimax modules

For an R-module N the Goldie dimension is defined as the cardinal of the set of indecomposable submodule of $E(N)$ which appear in a decomposition of $E(N)$ in to a direct sum of indecomposable submodules. We shall use $G \text{dim} N$ to denote the Goldie dimension of N. Let $\mu^{0}(p, N)$ denote the 0-th Bass number of N with respect to prime ideal p of R. It is well known that $\mu^{0}(p, N) > 0$ if and only if $p \in \text{Ass}_{R}N$ and it is clear that

$$G \text{dim} N = \sum_{p \in \text{Ass}_{R}N} \mu^{0}(p, N).$$

Also, the I-relative Goldie dimension of N is defined as

$$G \text{dim}_{I} N = \sum_{p \in \text{VU} \cap \text{Ass}_{R}N} \mu^{0}(p, N).$$

The I-relative Goldie dimension of an R-module has been studied in Divaani-Aazar and Esmkhani (2005) and in Lemma 2.6 it is shown that $G \text{dim}_{I} N = G \text{dim} H^{0}_{I}(N)$. Having this in mind, we introduce the following generalization of the notion of I-relative Goldie dimension.

Definition 2.1 Let I be an ideal of R and M be a finitely generated R-module. We denote by $G \text{dim}_{I,M} N$ the I, M-relative Goldie dimension of N and we define I, M-relative Goldie dimension of N as

$$G \text{dim}_{I,M} N = G \text{dim} H^{0}_{I}(M, N).$$

The class of I-minimax modules is defined in Azami et al. (2008) and an R-module N is said to be $\text{minimax with respect to } I$ or I-minimax if I-relative Goldie dimension of any quotient module of N is finite. This motivates the following definition.

Definition 2.2 Let I be an ideal of R and M be a finitely generated R-module. An R-module N is said to be I, M-minimax if the I, M-relative Goldie dimension of any quotient module of N is finite; i.e. for any submodule K of N, $G \text{dim}_{I,M} N/K < \infty$.

Proposition 2.3 Let N be an R-module. Then N is I,M-minimax if and only if N is $\text{Ann}(M/IM)$-minimax.

Proof It is sufficient to show that for each $p \in \text{Ann}(M/IM)$, there is an integer n_{p} such that
G \dim_{I,N} = \sum_{p \in \text{Ass}(I,N) / \text{Ass}(M/I)} n_p \mu^0(p, N).

We have \(H^i_I(M, N) \cong \text{Hom}_R(M, \Gamma_i(N)) \cong \Gamma_i(\text{Hom}_R(M, N)) \) so that it follows

\[
G \dim_{I,N}(N) = G \dim_{I,N}(M, N) = \sum_{p \in \text{Ass}(I, M, N)} \mu^0(p, H^i_I(M, N))
= \sum_{p \in \text{Ass}(M, N) / \text{Ass}(M/I)} \mu^0(p, \text{Hom}_R(M, N)).
\]

On the other hand, \(\text{Ass} \text{Hom}_R(M, N) = \text{Ass} \cap \text{Supp} M \). Hence,

\[
G \dim_{I,N}(N) = \sum_{p \in \text{Ass}(N) \cap V(\text{Ann}(M/I))} \mu^0(p, \text{Hom}_R(M, N)).
\]

For \(p \in \text{Ass}(N) \cap V(\text{Ann}(M/I)) \) we have

\[
\mu^0(p, \text{Hom}_R(M, N)) = \dim_{k_p} \text{Hom}_{k_p}(k(p), \text{Hom}_{k_p}(M_{p'}, N_{p'})) = \dim_{k_p} \text{Hom}_{k_p}(k(p) \otimes_{k_p} M_{p'}, N_{p'}),
\]

where \(k(p) = R_\wp / \wp R_\wp \) and \(k(p) \otimes_{k_p} M_{p'} \) is a finite dimensional \(k(p) \)-vector space with dimension \(n_p \).

Hence, \(k(p) \otimes_{k_p} M_{p'} \cong \oplus_{n_p} k(p) \) which implies that

\[
\mu^0(p, \text{Hom}_R(M, N)) = \dim_{k_p} \text{Hom}_{k_p}(\oplus_{n_p} k(p), N_{p'}) = n_p \mu^0(p, N).
\]

It is clear that the above argument is true for each quotient of \(N \).

\[\square\]

Remark 2.4 The following statements are true for any \(R \)-module \(N \).

(i) The \(I, R \)-minimax modules are precisely \(I \)-minimax.

(ii) The \(I, M \)-minimax modules are \(I \)-minimax.

(iii) If \(N \) is Noetherian or Artinian \(R \)-module, then \(N \) is \(I, M \)-minimax.

(iv) If \(J \) is a second ideal of \(R \) such that \(I \subseteq J \) and \(N \) is \(J, M \)-minimax, then \(N \) is \(I, M \)-minimax.

(v) Let \(N \) be \(\text{Ann}_R(M) \)-torsion, i.e. \(\Gamma_{\text{Ann}_R(M)}(N) = 0 \). Then \(N \) is \(I, M \)-minimax if and only if \(N \) is \(I \)-minimax.

Proposition 2.5 Let \(0 \to N' \to N \to N'' \to 0 \) be an exact sequence of \(R \)-modules. Then \(N \) is \(I, M \)-minimax if and only if \(N' \) and \(N'' \) are both \(I, M \)-minimax.

Proof This is immediate from Proposition 2.3 and Azami et al. (2008, Proposition 2.5).

Proposition 2.6 Let \(t \) be a non-negative integer. Then for all \(R \)-module \(N \) the following statements are equivalent:

(i) \(\text{Ext}^i_I(R/I, N) \) is \(I, M \)-minimax for all \(i \leq t \).

(ii) \(\text{Ext}^i_J(R/J, N) \) is \(I, M \)-minimax for all ideal \(J \) of \(R \) with \(I \subseteq J \) and for all \(i \leq t \).

(iii) \(\text{Ext}^i_J(L, N) \) is \(I, M \)-minimax for all finitely generated \(R \)-module \(L \) with \(\text{Supp} L \subseteq \text{V}(I) \) and for all \(i \leq t \).

(iv) For any minimal prime ideal \(\wp \) over \(I \), \(\text{Ext}^i_I(R/\wp, N) \) is \(I, M \)-minimax for all \(i \leq t \).

Proof The proof is similar to that of Azami et al. (2008, Corollary 2.8).
Proposition 2.7 If N is an I, M-minimax module such that $\text{Ass}_N(N) \subseteq V(I)$, then $H^i_I(L, N)$ is I, M-minimax for all finitely generated R-module L and all $i \geq 0$.

Proof If $i = 0$, then $H^0_I(L, N) = \text{Hom}_R(L, \Gamma_0(N))$ and so by Azami et al. (2008, Corollary 2.5), $H^0_I(L, N)$ is I, M-minimax. As $\text{Ass}_N(N) \subseteq \text{Ass}_N(N)$, it easily follows from $\text{Ass}_N(N) \subseteq V(I)$ that $N = \Gamma_0(N)$. Consequently, $H^0_I(L, N) = \text{Ext}_R^0(L, N)$ for all $i \geq 0$, by Yassemi et al. (2002, Theorem 2.3). So that $H^i_I(L, N)$ is I, M-minimax for all $i \geq 0$, as required.

Proposition 2.8 Let N be an R-module and let t be a non-negative integer. If $H^t_I(N)$ is I, M-minimax for all $i < t$, then $H^t_I(M, N)$ is I, M-minimax for all $i < t$.

Proof We use induction on t. When $t = 1$, the R-module $\Gamma_1(N)$ is I, M-minimax by assumption. Since $H^1_I(M, N) \cong \text{Hom}_R(M, \Gamma_1(N))$, it follows that $H^1_I(M, N)$ is I, M-minimax, by Azami et al. (2008, Theorem 2.7). Now suppose, inductively, that $t > 1$ and the result has been proved for $t - 1$. Since $H_t^0(N) \cong H_t^0(N/\Gamma_1(N))$ and $H_t^0(M, N) \cong H_t^0(M, N/\Gamma_1(N))$ for all $i > 0$, it follows that $H_t^0(N/\Gamma_1(N))$ is I, M-minimax for all $i < t - 1$. Therefore, we may assume that N is I-torsion free. Let E be an injective envelope of N and put $N_t = E/N$. Then $\Gamma_1(E) = 0$. Consequently, $H_t^0(N_t) \cong H_t^0(N)$. Thus $H_t^0(N_t)$ is I, M-minimax for all $i < t - 1$ and by induction hypothesis $H_t^0(M, N_t)$ is I, M-minimax for all $i < t$. Also, we have $H_t^0(M, N_t) \cong H_t^0(M, N)$ so that $H_t^0(M, N)$ is I, M-minimax for all $i < t$.

3. Finiteness of associated primes

It will be shown in this section that the subject of the previous section can be used to prove a finiteness result about generalized local cohomology modules. In fact we will generalize the main results of Brodmann and Lashgari Faghani (2000) and Azami et al. (2008). Throughout this section I is an ideal of R and M is a finitely generated R-module.

Theorem 3.1 Let N be an R-module and let t be a non-negative integer. If $H^t_I(N)$ is I, M-minimax for all $i < t$, and $\text{Ext}^t_I(R/I, N)$ is I, M-minimax, then for any I, M-minimax submodule K of $H_I^t(M, N)$ and for any finitely generated R-module L with $\text{Supp} L \subseteq V(I)$ the R-module $\text{Hom}_R(L, H_I^t(M, N)/K)$ is I, M-minimax.

Proof The exact sequence

$$0 \longrightarrow K \longrightarrow H^t_I(M, N) \longrightarrow H^t_I(M, N)/K \longrightarrow 0$$

provides the following exact sequence:

$$\cdots \longrightarrow \text{Hom}_R(L, H^t_I(M, N)) \longrightarrow \text{Hom}_R(L, H^t_I(M, N)/K) \longrightarrow \text{Ext}^t_I(L, K) \longrightarrow \cdots .$$

By Azami et al. (2008, Corollary 2.5), $\text{Ext}^t_I(L, K)$ is I, M-minimax, so in view of Azami et al. (2008, Proposition 2.3), it is thus sufficient for us to show that the R-module $\text{Hom}_R(L, H^t_I(M, N/K))$ is I, M-minimax. To this end, it is enough to show that $\text{Hom}_R(L/R/I, H^t_I(M, N))$ is I, M-minimax by Proposition 2.6. We use induction on t. When $t = 0$, the R-module $\text{Hom}_R(L/R/I, N)$ is I, M-minimax, by assumption. On the other hand,

$$\text{Hom}_R(L/R/I, H^t_I(M, N)) \cong \text{Hom}_R(L/R/I, \text{Hom}_R(L/R/I, \Gamma_0(N)))$$

$$\cong \text{Hom}_R(M/IM, \Gamma_0(N)) \cong \text{Hom}_R(M/IM, N)$$

and $\text{Supp}(M/IM) \subseteq V(I)$, it follows that $\text{Hom}_R(M/IM, N)$ is I, M-minimax, by Proposition 2.6. Hence $\text{Hom}_R(L/R/I, H^t_I(M, N))$ is I, M-minimax. Now suppose, inductively, that $t > 0$ and that the result has been proved for $t - 1$. Since $\Gamma_1(N)$ is I, M-minimax, it follows that $\text{Ext}^t_I(L/R/I, \Gamma_0(N))$ is I, M-minimax for all $i > 0$. The exact sequence

$$0 \longrightarrow \Gamma_0(N) \longrightarrow N \longrightarrow N/\Gamma_0(N) \longrightarrow 0$$

induces the exact sequence

$$0 \longrightarrow \Gamma_0(N) \longrightarrow N \longrightarrow N/\Gamma_0(N) \longrightarrow 0$$
\[\text{Ext}^i(R/I, N) \to \text{Ext}^i(R/I, N/\Gamma_i(N)) \to \text{Ext}^{i+1}(R/I, \Gamma_i(N)). \]

Now, the R-module \(\text{Ext}^i(R/I, N/\Gamma_i(N)) \) is \(I, M \)-minimax, by Azami et al. (2008, Proposition 2.3) and the assumption. Also, \(H^0_i(N/\Gamma_i(N)) = 0 \) and \(H^j_i(N/\Gamma_i(N)) \cong H^j_i(N) \) for all \(i > 0 \), so that \(H^j_i(N/\Gamma_i(N)) \) is \(I, M \)-minimax for all \(i < t \). Therefore, we may assume that \(N \) is \(I \)-torsion free. Let \(E \) be an injective envelope of \(N \) and put \(T = E/N \). Then \(H^0_i(T) = 0 \), \(H^j_i(T) = 0 \) and \(\text{Hom}_R(R/I, E) = 0 \). Consequently, \(\text{Ext}^i(R/I, T) \cong \text{Ext}^{i+1}_R(R/I, N) \cong H^{i+1}_i(N) \) and \(H^j_i(M, T) \cong H^{j+1}_i(M, N) \) for all \(i > 0 \). The induction hypothesis applied to \(T \) yields that \(\text{Hom}_R(M/IM, H^{j+1}_i(M, T)) \) is \(I, M \)-minimax. Hence \(\text{Hom}_R(M/IM, H^j_i(M, N)) \) is \(I, M \)-minimax.

Theorem 3.2 Let \(N \) be an \(I, M \)-minimax \(R \)-module and let \(t \) be a non-negative integer such that \(H^j_i(N) \) is \(I, M \)-minimax for all \(i < t \). Then for any \(I, M \)-minimax submodule \(K \) of \(H^j_i(M, N) \) and for any finitely generated \(R \)-module \(L \) with \(\text{Supp} \subset \text{V}(I) \) the \(R \)-module \(\text{Hom}_R(L, H^j_i(M, N)/K) \) is \(I, M \)-minimax. In particular, the set of associated prime ideals of \(H^j_i(M, N)/K \) is finite.

Proof Apply the last theorem and Azami et al. (2008, Corollary 2.5).

Funding The authors received no direct funding for this research.

Author details

Sh. Payrovi
E-mail: shpayrovi@sci.ikiu.ac.ir
I. Khalili-Gorji
E-mail: ikhalili@edu.ikiu.ac.ir
Z. Rahimi-Molaee
E-mail: z.rahimi_math@yahoo.com

1 Department of Mathematics, Imam Khomeini International University, 34149-1-6818, Qazvin, Iran.

Citation information

Cite this article as: Finiteness properties of generalized local cohomology modules for minimax modules, Sh. Payrovi, I. Khalili-Gorji & Z. Rahimi-Molaei, Cogent Mathematics (2017), 4: 1327683.

References

