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1. Introduction
The Mittag-Leffler functions are important special functions, that provides solutions to number of 
problems formulated in terms of fractional order differential, integral and difference equations; 
therefore, it has recently become a subject of interest for many authors in the field of fractional cal-
culus and its applications. For detailed account of fractional calculus operators along with their prop-
erties and applications, one may refer to the research monographs by Kilbas, Srivastava, and Trujillo 
(2006), Kiryakova (1994), Miller and Ross (1993), Srivastava and Saigo (1987), Srivastava and Saxena 
(2001) and recent papers Mishra and Agarwal (2016), Mishra, Agarwal, and Sen (2016), Mishra and 
Sen (2016), Mishra, Srivastava, and Sen (2016), Purohit (2013) and Purohit and Kalla (2011).

The Swedish mathematician Mittag-Leffler (1903) introduced the function E
�
(z), defined by:

A further, two-index generalization of this function was studied by Wiman (1905) as:

where ℜ(𝛼) > 0 and ℜ(𝛽) > 0.

Prabhakar (1971) introduced the generalization of Mittag-Leffler function E�
�, �

(z) in the form

where �, � , � ∈ ℂ, ℜ(𝛼) > 0. Further, it is an entire function of order 
[
Re(�)

]−1
 (see Prabhakar, 

1971, p. 7).

Shukla and Prajapati (2007) (see also Srivastava & Tomovski, 2009) defined and investigated the 
function E� ,q

�, �
(z) as

where �, �, � , � ∈ ℂ, ℜ(𝛼) > 0, ℜ(𝛽) > 0, ℜ(𝛾) > 0, q ∈ (0, 1)Uℕ and (�)qn =
Γ(�+qn)

Γ(�)
 denotes the 

generalized Pochhammer symbol, which in particular reduces to

It is remarked that certain much more general functions of the Mittag-Leffler type have already 
been investigated in the literature rather systematically and extensively, but for the purpose of this 
paper we use the function given by (4) only.

The generalized Wright function p�q(z) defined for z ∈ ℂ ai , bj ∈ ℂ, and Ai , Bj ∈ ℜ(Ai , Bj ≠ 0;
i = 1, 2, … , p; j = 1, 2, … ,q) is given by the series

where Γ(z) is the Euler gamma function and the function (5) was introduced by Wright (1935) and is 
known as generalized Wright function, for all values of the argument z, under the condition:

(1)E
𝛼
(z) =

∞∑

n=0

1

Γ(𝛼n + 1)
zn, (𝛼 ∈ ℂ);ℜ(𝛼) > 0

(2)E
�, �

(z) =

∞∑

n=0

1

Γ(�n + �)
zn, (�, � ∈ ℂ)

(3)E�
�, �

(z) =

∞∑

n=0

(�)n

Γ(�n + �)n!
zn,

(4)E
� , q

�, �
(z) =

∞∑

n=0

(�)qn

Γ(�n + �)

zn

n !
,

qqn
q∏

r=1

(
� + r − 1

q

)

n

.

(5)p�q(z) = p�q

�
(ai , Ai)1, p
(bj , Bj)1, q

�z
�
=

∞�

k=0

∏p

i=1
Γ(ai + Aik) z

k

∏q

j=1
Γ(bj + Bjk) k!

,
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For detailed study of various properties, generalization and application of Wright function and 
generalized Wright function, we refer to paper (for instance, see Wright, 1935, 1940, 1940).

The Srivastava polynomials defined by Srivastava (1968, p. 1, Equation (1)) in the following 
manner:

where u is an arbitrary positive integer and the coefficients Aw.s(w, s) ≥ 0 are arbitrary constants, 
real or complex.

On account of success of the Saigo operators (Saigo, 1978, 1979), in their study on various function 
spaces and their application in the integral equation and differential equations, Saigo and Maeda 
(1998) introduced the following generalized fractional and differential operators of any complex 
order with Appell function F

3
(⋅) in the kernel, as follows:

Let �, ��, �, ��, � ∈ ℂ and x > 0, then the generalized fractional calculus operators (the Marichev-
Saigo-Maeda operators) involving the Appell function, or Horn’s F

3
-function are defined by the 

following equations:

and

(6)
q∑

j=1

Bj −

p∑

i=1

Ai > −1.

(7)Suw[x] =

[w∕u]∑

s=0

(−w)u.s

s!
Aw.s x

s, w = 0, 1, 2, …

(8)

(
I𝛼, 𝛼

� , 𝛽, 𝛽� , 𝛾

0+
f
)
(x) =

x−𝛼

Γ(𝛾)

x

∫
0

(x − t)𝛾−1t−𝛼
�

× F
3

(
𝛼, 𝛼�, 𝛽, 𝛽�; 𝛾 ; 1 −

t

x
, 1 −

x

t

)
f (t)dt, (ℜ(𝛾) > 0),

(9)

(
I�, �

� , �, �� , �

0+
f
)
(x) =

(
d

dx

)k(
I�, �

� , �+k, �� , �+k

0+
f
)
(x),

(
ℜ(�) ≤ 0; k = [

−ℜ(�) + 1
])
;

(10)

(
I𝛼, 𝛼

� , 𝛽, 𝛽� , 𝛾

−
f
)
(x) =

x−𝛼
�

Γ(𝛾)

∞

∫
x

(t − x)𝛾−1t−𝛼

× F
3

(
𝛼, 𝛼�, 𝛽, 𝛽�; 𝛾 ; 1 −

x

t
, 1 −

t

x

)
f (t)dt, (ℜ(𝛾) > 0),

(11)

(
I�, �

� , �, �� , �

−
f
)
(x) =

(
−
d

dx

)k(
I�, �

� , �, ��+k, �+k
−

f
)
(x),

(
ℜ(�) ≤ 0; k = [

−ℜ(�) + 1
])
;

(12)

(
D�, �� ,�,�� ,�

0+
f
)
(x) =

(
I−�

� ,−�,−�� ,−�,−�

0+
f
)
(x)

=

(
d

dx

)k(
I−�

� ,−�,−��+k,−�=�+k

0+
f
)
(x),

(13)

(
ℜ(𝛾) > 0; k =

[
ℜ(𝛾) + 1

])
;

(
D𝛼, 𝛼� , 𝛽, 𝛽� , 𝛾

−
f
)
(x) =

(
I−𝛼

� ,−𝛼,−𝛽� ,−𝛽,−𝛾

−
f
)
(x)

=

(
−
d

dx

)k(
I−𝛼

� ,−𝛼,−𝛽� ,−𝛽+k,−𝛾+k
−

f
)
(x),

(
ℜ(𝛾) > 0; k =

[
ℜ(𝛾) + 1

])
.
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For the definition of the Appell function F
3
(⋅) the interested reader may refer to the monograph by 

Srivastava and Karlsson (1985) (see Erdélyi, Magnus, Oberhettinger, and Tricomi (1953), Prudnikov, 
Brychkov, and Marichev (1992) and Samko, Kilbas, and Marichev (1993)).

Following Saigo and Maeda (1998), the image formulas for a power function, under operators (8) 
and (10), are given by:

where ℜ(𝜌) > max
{
0, ℜ(𝛼 + 𝛼

� + 𝛽 − 𝛾), ℜ(𝛼� − 𝛽
�)
}

 and ℜ(𝛾) > 0.

where ℜ(𝛾) > 0, ℜ(𝜌) < 1 +min
{
ℜ(−𝛽), ℜ

(
𝛼 + 𝛼

� − 𝛾
)
, ℜ

(
𝛼 + 𝛽

� − 𝛾
)}
.

Here, we used the symbol Γ
[

⋯

⋯

]
 representing the fraction of many Gamma functions.

The computations of fractional integrals and fractional derivatives of special functions of one and 
more variables are important from the point of view of the usefulness of these results in the evalua-
tion of generalized integrals and generalized derivatives and the solution of differential and integral 
equations (for example see Baleanu, Kumar, and Purohit (2016), Kumar, Purohit, and Choi (2016), 
Nisar, Purohit, Abouzaid, Qurashi, and Baleanu (2016), Purohit, Kalla, and Suthar (2011), Purohit, 
Suthar, and Kalla (2012), Srivastava (1972, 2016), Suthar, Parmar, and Purohit, (2017), Tomovski, 
Hilfer, and Srivastava (2010), Tomovski, Pogány, and Srivastava (2014)). Motivated by these avenues 
of applications, here we establish four image formulas for the generalized Mittag-Leffler function (4), 
involving left- and right-sided operators of Marichev-Saigo-Meada fractional integral operators and 
fractional derivatives, in term of the generalized Wright function.

2. Main results
Throughout this paper, we assume that a, �, ��, �, ��, � , �, �, �, � ∈ ℂ, 𝜆 > 0, such that 
ℜ(𝛿) > 0, ℜ(𝜇) > 0, ℜ(𝜂) > 0, q ∈ (0, 1)

⋃
ℕ. Further, let the constants satisfy the condition 

ai , bj ∈ ℂ, and Ai , Bj ∈ ℝ(Ai , Bj ≠ 0;i = 1, 2, … , p; j = 1, 2, … , q), such that the condition (6) is 
also satisfied.

2.1. Left-sided generalized fractional integration of product of polynomial and 
generalized Mittag-Leffler function

In this section, we establish image formulas for the product of Srivastava polynomial and general-
ized Mittag-Leffler function involving left-sided operators of Marichev-Saigo-Meada fractional inte-
gral operators (8), in term of the generalized Wright function. These formulas are given by the fol-
lowing theorems:

Theorem 2.1  Let ℜ(𝛾) > 0, ℜ(𝜆) > 0, ℜ(𝜌) > max
[
0, ℜ(𝛼 + 𝛼

� + 𝛽 − 𝛾) , ℜ(�� − �
�)
]
, then the general-

ized fractional integration I�, �
�
, �, �

�
, �

0+
 of the product of generalized Mittag-Leffler function E�,q

�,�
(⋅), and 

Smn (.) is given by

(14)

(
I�, �

� , �, �� , �

0+
x�−1

)
(x) = x�−�−�

�+�−1

× Γ

[
�, � + � − � − �

� − �, � + �
� − �

�

� + �
�, � + � − � − �

�, � + � − �
� − �

]
,

(15)

(
I�, �

� , �,�� , �

−
x�−1

)
(x) = x�+�−�−�

�−1

×
Γ
(
1 − � − � + � + �

�
)
Γ(1 − � + � + �

� − �)Γ(1 − � − �)

Γ(1 − �)Γ(1 − � + � + �
� + �

� − �)Γ(1 − � + � − �)
,
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Proof  On using (4) and (7), writing the function in the series form, the left-hand side of (16), leads to

Now, upon using the image formula (14), which is valid under the conditions stated with Theorem 
2.1, we get

Interpreting the right-hand side of the above equation, in view of the definition (5), we arrive at the 
result (16).

On setting n = 0, A
0, 0

= 1 then Sm
0
[x] → 1 in (16), we obtained the following particular case of Theo-

rem 2.1:

Corollary 2.1  Let the conditions of Theorem 2.1 are satisfied, then the following formula holds ture

Remark 1  If we set q = 1, in Corollary 2.1 , we arrive at the known result given by Chouhan, Khan, 
and Saraswat (2014, Equation (13)).
Now, we present some special cases of (19) as below:
For � = � + �, �� = �

� = 0, � = −�, � = �, we obtain the following relationship

where the operator I�, �, �
0+

(⋅) denotes the Saigo fractional integral operator (Saigo, 1978), which is 
defined by

Corollary 2.2  Let ℜ(𝛾) > 0, ℜ(𝜐) > 0, ℜ(𝜌) > max
[
0, ℜ(𝛽 − 𝜏)

]
, then there hold the following for-

mula:

(16)

(
I�, �

�
, �, �

�
, �

0+

(
t�−1Smn

(
� t�

)
E
�,q

�,�

[
at�

]))
(x) =

x�−�−�
�
+�−1

Γ(�)

[n∕m]∑

s=0

(−n)m, s

s!

× An, s
(
�x�

)s
4
�
4

[
(� + � − � − �

� − � + � s, �), (� + �
� − �

� + � s, �), (� + � s, �), (�, q)

(� + � − �
� − � + � s, �), (� + � − � − �

� + � s, �), (� + �
� + � s, �), (�, �)

|||ax
�

]
.

(17)

(
I�, �

�
, �, �

�
, �

0+

(
t�−1Smn

(
�t�

)
E
�,q

�,�

[
at�

]))
(x) =

[n∕m]∑

s=0

(−n)m,s

s!

× An, s
(
� t�

)s ∞∑

k=0

(�)q k

Γ
(
� + � k

)
k!

(
at�

)k (
I�, �

�
, �, �

�
,�

0+

(
t�−�−�

�
+�−1

))
(x),

(18)

(
I�, �

�
, �, �

�
, �

0+

(
t�−1Smn

(
�t�

)
E
�,q

�,�

[
at�

]))
(x)

=

[n∕m]∑

s=0

(−n)m, s

s!
An, s

(
�x�

)s x�−�−�
�
+�−1

Γ(�)

∞∑

k=0

Γ(� + � − � − �
� − � + �s + �k)

Γ(� + � − �
� − � + �s + �k)

×
Γ(� + �

� − �
� + �s + �k) Γ(� + �s + �k) Γ(� + qk)

Γ(� + � − � − �
� + �s + �k) Γ(� + �

� + �s + �k) Γ(� + �k)

(
(ax)�

)k

k!
,

(19)

(
I�, �

�
, ��

�
, �

0+

(
t�−1 E

�,q

�,�

[
at�

]))
(x) =

x�−�−�
�
+�−1

Γ(�)

×
4
�
4

[
(� + � − � − �

� − �, �), (� + �
� − �

�, �), (�, �), (�, q)

(� + � − �
� − �, �), (� + � − � − �

�, �), (� + �
�, �), (�, �)

|||ax
�

]
.

(20)
(
I�, �

�
, �, �

�
, �

0+

)
(x) =

(
I�, �, �
0+

f
)
(x),

(21)
(
I𝛼, 𝛽, 𝜏
0+

f
)
(x) =

x−𝛼−𝜏

Γ(𝛼)

x

∫
0

(x − t)𝛼−1
2
F
1
(𝛼 + 𝜏, −𝜂; 𝛼; 1 − t x )f (t)dt, ℜ(𝛼) > 0.
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Remark 2  If we set q = 1, � = � and n = 0, A
0, 0

= 1 then Sm
0
[x] → 1 in Corollary 2.2, we arrive at the 

known result given by Ahmed (2014, Equation (3.1)).

2.2. Right-sided generalized fractional integration of product of polynomial and 
generalized Mittag-Leffler function

In this part, we establish image formulas for the product of Srivastava polynomial and generalized 
Mittag-Leffler function involving right-sided operators of Marichev-Saigo-Meada fractional integral 
operators (10), in term of the generalized Wright function. These formulas are given by the following 
theorems:

Theorem 2.2  For ℜ(𝛾) > 0, ℜ(1 − 𝛾 − 𝜌) < 1 +min
[
ℜ(−𝛽), ℜ(𝛼 + 𝛼

� − 𝛾), ℜ(� + �
� − �)

]
, we have

Proof  On using (4) and (7), the left-hand side of (23), can be written as:

which on using the image formula (15), arrive at

Interpreting the right-hand side of the above equation, in view of the definition (5), we arrive at the 
result (23).

On setting n = 0, A
0, 0

= 1 then Sm
0
[x] → 1 in (23), we obtained the following particular case of  

Theorem 2.2.

Corollary 2.3  The generalized fractional integration of generalized Mittag-Leffler function E�,q
�,�

(⋅), is 
given by

(22)

(
I�, �, �
0+

(
t�−1Smn

(
�t�

)
E
�,q

�,�

[
at�

]))
(x) =

x�−�−1

Γ(�)

[n∕m]∑

s=0

(−n)m,s

s!
An,s

(
�x�

)s

×
3
�
3

[
(� − � + � + � s, �), (� + � s, �), (�, q)

(� + � + � + � s, �), (� − � + � s, �), (�, �)

|||ax
�

]
.

(23)

(
I�, �

�
, �, �

�
, �

−

(
t−�−�Smn

(
� t�

)
E
�,q

�,�

[
at−�

]))
(x) =

x−�−�−�
�

Γ(�)

[n∕m]∑

s=0

(−n)m, s

s!

× An, s
(
� x�

)s
4
�
4

[
(� + �

� + � − � s, �), (� + �
� + � − � s, �), (� − � + � − � s, �), (�, q)

(�, �), (� + �
� + �

� + � − � s, �), (� − � + � + � − � s, �), (� + � − � s, �)

|||ax
−�

]
.

(24)

(
I�,�

�
, �, �

�
, �

−

(
t−�−�Smn

(
�t�

)
E
�,q

�,�

[
at−�

]))
(x) =

[n∕m]∑

s=0

(−n)m, s

s!

× An, s
(
�t�

)s ∞∑

k=0

(�)qk

Γ(� + � k)

(
at−�

)k (
I�, �

�
, �, �

�
, �

−

(
t−�−�−�

�
))

(x),

(25)

(
I�, �

�
, �, �

�
, �

−

(
t−�−�Smn

(
�t�

)
E
�,q

�,�

[
at−�

]))
(x)

=

[n∕m]∑

s=0

(−n)m, s

s!
An, s

(
�x�

)s x−�−�−�
�

Γ(�)

∞∑

k=0

Γ(� + �
� + � − � s + �k)

Γ(� + �
� + �

� + � − � s + �k)

×
Γ(� + �

� + � − � s + �k) Γ(� − � + � − � s + �k) Γ (� + qk)

Γ(� − � + � + � − � s + �k) Γ(� + � − � s + �k) Γ(� + �k)

(
(a x)−�

)k

k!
,

(
I�, �

�
, �, �

�
, �

−

(
t−�−� E

�,q

�,�

[
at−�

]))
(x) =

x−�−�−�
�

Γ(�)

×
4
�
4

[
(� + �

� + �, �), (� + �
� + �, �), (� − � + � , �), (�, q)

(�, �), (� + �
� + �

� + �, �), (� − � + � + � , �), (� + � , �)

|||a x
−�

]
,
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provided ℜ(𝛾) > 0, ℜ(1 − 𝛾 − 𝜌) < 1 +min
[
ℜ(−𝛽), ℜ(𝛼 + 𝛼

� − 𝛾), ℜ(� + �
� − �)

]
.

Remark 3  If we set q = 1, in Corollary 2.3, we arrive at the known result given by Chouhan et al. 
(2014, Equation (15)).
When we let � = � + �, �� = �

� = 0, � = −�, � = �, then we obtain the relationship

where the Saigo fractional integral operator (Saigo, 1978) is defined by

Corollary 2.4  If ℜ(𝛼) > 0, ℜ(𝜆) > 0, ℜ(1 − 𝛾 − 𝜌) < 1 +min
[
ℜ(−𝛽), ℜ(−�)

]
, then we have

Remark 4  If we set q = 1, � = � and n = 0, A
0, 0

= 1 then Sm
0
[x] → 1 in Corollary 2.4, we arrive at the 

known result given by Ahmed (2014, Equation (4.1)).

2.3. Left-sided generalized fractional differentiation of product of polynomial and 
generalized Mittag-Leffler function

Now, we shall establish image formulas for the product of Srivastava polynomial and generalized 
Mittag-Leffler function involving left-sided operators of Marichev-Saigo-Meada fractional differen-
tiation operators (12) in term of the generalized Wright function. These formulas are given by the 
following theorems:

Theorem 2.3  The generalized fractional differentiation D�, �
�
, �, �

�
, �

0+
 of the product of generalized Mittag-

Leffler function E�,q
�,�

(⋅) and Srivastava polynomials Smn (⋅) is given by

where ℜ(𝛾) > 0, ℜ(𝜆) > 0, ℜ(𝜌) > max
[
0, ℜ(𝛾 − 𝛼 − 𝛼

� − 𝛽
�), ℜ(𝛽 − 𝛼)

]
.

Proof  On using (4) and (7), writing the function in the series form, the left-hand side of (29), leads to

Now, upon using the image formula (14), which is valid under the conditions stated with Theorem 
2.3, we get

(26)
(
I�, �

�
, �, �

�
, �

−

)
(x) =

(
I�, �, �
−

f
)
(x),

(27)
(
I�, �, �
−

f
)
(x) =

1

Γ(�)

∞

∫
x

(t − x)�−1t−�−�
2

F
1
(� + �, −�; �; 1 − x t)f (t)dt.

(28)

(
I�, �, �
−

(
t−�−�Smn

(
� t�

)
E
�,q

�,�

[
at−�

]))
(x) =

x−�−�−�

Γ(�)

[n∕m]∑

s=0

(−n)m, s

s!

× An, s
(
� x�

)s
3
�
3

[
(� + � + � − � s, �), (� + � + � − � s, �), (�, q)

(�, �), (2� + � + � + � − � s, �), (� + � − � s, �)

|||ax
−�

]
.

(29)

(
D�, �

�
, �, �

�
, �

0+

(
t�−1Smn

(
�t�

)
E
�,q

�,�

[
at�

]))
(x) =

x�+�+�
�
−�−1

Γ(�)

[n∕m]∑

s=0

(−n)m,s

s!

× An, s
(
� x�

)s
4
�
4

[
(� − � + � + �

� + �
� + � s, �), (� − � + � + � s, �), (� + � s, �), (�, q)

(� − � + � + �
� + � s, �), (� − � + � + �

� + � s, �), (� − � + � s, �), (�, �)

|||ax
�

]
,

(30)

(
D�, �

�
, �, �

�
, �

0+

(
t�−1Smn

(
� t�

)
E
�,q

�,�

[
at�

]))
(x) =

[n∕m]∑

s=0

(−n)m, s

s!
An, s

(
� t�

)s

×

∞∑

k=0

(�)q k

Γ
(
� + � k

)
k!

(
at�

)k (
I−�

�
,−�,−�

�
,−�,−�

0,+

(
t�−�−�

�
+�−1

))
(x),
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Interpreting the right-hand side of the above equation, in view of the definition (5), we arrive at the 
result (29).

On setting n = 0, A
0, 0

= 1 then Sm
0
[x] → 1 in (29), we obtained the following particular case of  

Theorem 2.3.

Corollary 2.5  Under the conditions ℜ(𝛾) > 0, ℜ(𝜆) > 0 and ℜ(𝜌) > max[
0, ℜ(� − � − �

� − �
�), ℜ(� − �)

]
, the following formula holds

Now, we present one more special case of (29), by making use of identity (20), as given below:

Corollary 2.6  The following generalized fractional differentiation formula holds

where ℜ(𝛾) > 0, ℜ(𝜐) > 0 and ℜ(𝜌) > max
[
0, ℜ(𝛽 − 𝜏)

]
.

Remark 5  If we set q = 1, � = � and n = 0, A
0, 0

= 1 then Sm
0
[x] → 1 in Corollary 2.6, we arrive at the 

known result given by Ahmed (2014, Equation (5.1)).

2.4. Right-sided generalized fractional differentiation of product of polynomial and 
generalized Mittag-Leffler function

Here, we establish image formulas for the product of Srivastava polynomials and generalized Mittag-
Leffler function involving right-sided operators of Marichev-Saigo-Meada fractional differentiation 
operators (13) in term of the generalized Wright function. These results are given as follows:

Theorem 2.4  If ℜ(𝛾) > 0, ℜ(1 − 𝛾 − 𝜌) < 1 +min
[
ℜ(−𝛽), ℜ(𝛼 + 𝛼

� − 𝛾),ℜ(� + �
� − �)

]
, then we have

(31)

(
D�, �

�
, �, �

�
, �

0+

(
t�−1Smn

(
� t�

)
E
�,q

�,�

[
at�

]))
(x) =

[n∕m]∑

s=0

(−n)m, s

s!

× An, s
(
� x�

)s x�−�−�
�
+�−1

Γ(�)

∞∑

k=0

Γ(� − � + � + �
� + �

� + � s + �k)

Γ(� + � + � + �
� + � s + �k)

×
Γ(� − � + � + � s + �k) Γ(� + � s + �k) Γ (� + qk)

Γ(� + � + � + �
� + � s + �k) Γ (� − � + � s + �k) Γ(� + �k)

(
(ax)�

)k

k!
,

(32)

(
D�, �

�
, �, �

�
, �

0+

(
t�−1 E

�,q

�,�

[
at�

]))
(x) =

x�+�+�
�
−�−1

Γ(�)

×
4
�
4

[
(� − � + � + �

� + �
�, �), (� − � + �, �), (�, �), (�, q)

(� − � + � + �
�, �), (� − � + � + �

�, �), (� − �, �), (�, �)

|||ax
�

]
.

(33)

(
D�, �, �

0+

(
t�−1Smn

(
� t�

)
E
�,q

�,�

[
at�

]))
(x) =

x�+�+�
�
−�−1

Γ(�)

×

[n∕m]∑

s=0

(−n)m, s

s!
An, s

(
� x�

)s
3
�
3

[
(� + � + � + � + � s, �), � + � s, �), (�, q)

(� + � + � s, �), (� + � + � s, �), (�, �)

|||ax
�

]
,

(34)

(
D�, �

�
, �, �

�
, �

−

(
t�−�Smn

(
� t�

)
E
�,q

�,�

[
at−�

]))
(x) =

x−�+�+�
�

Γ(�)

[n∕m]∑

s=0

(−n)m, s

s!

× An, s
(
� x�

)s
4
�
4

[
(� − � − �

� − �s, �), (� − � − �
� − �s, �), (� + �

� − � − �s, �), (�, q)

(�, �), (� − � − �
� − � − �s, �), (� − �

� + �
� − � − �s, �), (� − � − �s, �)

|||ax
−�

]
.
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Proof  By using (4) and (7), the left-hand side of (34), can be written as

which on using the image formula (15), arrive at

Interpreting the right-hand side of the above equation, in view of the definition (5), we arrive at the 
result (34).

Further, on setting n = 0, A
0, 0

= 1 then Sm
0
[x] → 1 in (34), we obtained the following particular case 

of Theorem 2.4.

Corollary 2.7  Let the conditions of Theorem 2.4 are satisfied, then the following formula holds

Now, by using the identity (26), we present certain special cases of (34), as given below:

Corollary 2.8  The generalized fractional differentiation formula associated with the product of gen-
eralized Mittag-Leffler function and Srivastava polynomials, is given by

provided ℜ(𝛾) > 0, ℜ(𝜆) > 0, ℜ(1 − 𝛾 − 𝜌) < 1 +min
[
ℜ(−𝛽), ℜ(−𝜏)

]
.

Remark 6  Finally, if we set q = 1, � = � and n = 0, A
0, 0

= 1, hence, Sm
0
[x] → 1 in Corollary 2.8, we 

arrive at the known result given by Ahmed (2014, Equation (6.1)).
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