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Some polynomials defined by generating functions 
and differential equations
Nobuyuki Dobashi1, Erika Suzuki1 and Shigeru Watanabe1*

Abstract: It is well known that generating functions play an important role in theory 
of the classical orthogonal polynomials. In this paper, we deal with systems of poly-
nomials defined by generating functions and the following problems for them. (A) 
Derive a differential equation that each polynomial satisfies. (B) Derive the general 
solution for the differential equation obtained in (A). (C) Is the general solution 
obtained in (B) written as a linear combination of functions that are expressed by 
making use of generalized hypergeometric functions? The purpose of this paper is to 
give two examples that the problem (C) can be affirmatively solved. One is related to 
the Humbert polynomials, and its general solution is written by 

k
F
k−1

-type hypergeo-
metric functions. The other is related to a genelarization of the Hermite polynomi-
als, and its general solution is written by 

k
F
�
-type (k ≤ �) hypergeometric functions. 
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1. Introduction
It is interesting to define new polynomials by new generating functions, and important to study their 
properties. Humbert (1921) defined the polynomials Π�

n,m(x), n = 0, 1, 2,… , by the generating 
function

Gould (1965) called Π�

n,m(x) the Humbert polynomial of degree n and gave its generalization. 
Milovanović and Djordjević (1987) gave a differential equation for the function Π�

n,m(x) using differ-
ence operators.

(1 −mtx + tm)−� =

∞∑

n=0

Π�

n,m(x)t
n.
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Lahiri (1971) defined the generalized Hermite polynomials H
n,m,�(x), n = 0, 1, 2,… , by the gen-

erating function

Gould and Hopper (1962) gave the other generalization of the Hermite polynomials by the generat-
ing function

The case of a = 0 is equivalent to that defined by Bell (1934).

In Suzuki (2013), we considered defining the polynomials Q
n
(x;k, �), n = 0, 1, 2,… , by the fol-

lowing generating function which is similar to that of the Humbert polynomials

where k is an integer such that k ≥ 2 and � is a positive real number. Note that

and the polynomial Q
n
(x;k, �) is not entirely new. However, we gave a differential equation for the 

function Q
n
(x;k, �), which is not by difference operators and is an explicit expression. For this reason, 

we could obtain the general solution at x = 0 of the differential equation that Q
n
(x;k, �) satisfies. 

And it is written as a linear combination of functions that are expressed by making use of 
k
F
k−1-type 

hypergeometric functions.

In Dobashi (2014), we considered defining a generalization of the Hermite polynomials by the 
generating function

where k, j are positive integers. And we obtained results similar to the case of Q
n
(x;k, �). In this case, 

the corresponding general solution is written as a linear combination of functions that are expressed 
by making use of 

k
F
k+j−1-type hypergeometric functions.

The purpose of this paper is to give the differential equations for Q
n
(x;k, �) and R

n
(x;k, j), and to 

derive the general solutions at x = 0 for them. The discussion for Q
n
(x;k, �) is given in Section 3, and 

that for R
n
(x;k, j) is given in Section 4.

2. Notation
For a real number x, [x] denotes the largest integer less than or equal to x. Denote Γ(� + �)∕Γ(�) by 
(�)

�
, where Γ is the Gamma function. For real constants a, b, denote axf �(x) + bf (x) by

Denote by N
0
 the set of nonnegative integers. For positive integers k, n, k|n means that k is a divisor 

of n. The generalized hypergeometric functions 
k
F
�
 is defined by

exp(�tx − tm) =

∞∑

n=0

H
n,m,�(x)

t
n

n!
.

x
−a(x − t)a exp(p(xr − (x − t)r)).

(1 − 2tx + tk)−� =

∞∑

n=0

Q
n
(x;k, �)tn,

Π�

n,m(x) = Qn(mx∕2;m, �)

exp(tkx − tk+j) =

∞∑

n=0

R
n
(x;k, j)tn,

(
ax

d

dx
+ b

)
f (x).

k
F
�

(
�
1
, �

2
, … , �

k

�
1
, �

2
, … , �

�

; x

)
=

∞∑

m=0

(�
1
)
m
(�
2
)
m
…(�

k
)
m

(�
1
)
m
(�
2
)
m
…(�

�
)
m

x
m

m!
.
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3. Polynomials Q
n
(x;k, �)

Let k be an integer such that k ≥ 2, and � be a positive real number. Unless otherwise noted, we fix 
k, �. There exists a positive real number �(k) such that

for −1 ≤ x ≤ 1 and −𝛿(k) < t < 𝛿(k).

As described in Section 1, we define the functions Q
n
(x;k, �), n = 0, 1, 2,… , by

Lemma 1  The function Q
n
(x;k, �) has the following expression.

In particular, Q
n
(x;k, �) is a polynomial of degree n.

Proof  Since we have (1), by the binomial theorem we see that

which implies our assertion.

3.1. Recurrence relations for Q
n
(x;k, �)

In this subsection, we shall give recurrence relations for the functions Q
n
(x;k, �).

For −1 ≤ x ≤ 1 and −𝛿(k) < t < 𝛿(k), set

Then it is easy to see that the following partial differential equations hold.

We can derive recurrence relations for Q
n
(x;k, �) from these differential equations. Rewrite both 

sides of (3) by making use of (2). Then we have

(1)| − 2tx + tk| < 1

(2)(1 − 2tx + tk)−𝜈 =

∞∑

n=0

Q
n
(x;k, 𝜈)tn, −1 ≤ x ≤ 1, −𝛿(k) < t < 𝛿(k).

Q
n
(x;k, �) =

[n∕k]∑

r=0

(−1)r2n−kr(�)
n−kr+r

r!(n − kr)!
x
n−kr .

(1 − 2tx + tk)−� =

∞∑

�=0

(−1)�(�)
�

�!
(t(tk−1 − 2x))�

=

∞∑

�=0

�∑

r=0

(−1)�(�)
�

r!(� − r)!
(−2x)�−r tkr−r+�

=

∞∑

n=0

[n∕k]∑

r=0

(−1)n−kr+r(�)
n−kr+r

r!(n − kr)!
(−2x)n−kr tn,

�(x, t) = 1 − 2tx + tk,

Φ(x, t) = (�(x, t))−� .

(3)�(x, t)
�

�t
Φ(x, t) + �(ktk−1 − 2x)Φ(x, t) = 0,

(4)�(x, t)
�

�x
Φ(x, t) − 2�tΦ(x, t) = 0.
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Compare the coefficients of tn in both sides of (5). Then we have

Similarly, by (4), we have the following recurrence relation.

Further, we shall give some recurrence relations for the functions Q
n
(x;k, �) that can be derived from 

the Equations (6) and (7). Differentiate both sides of (6) and substitute (7) into it. Then we obtain

Remark 1  This recurrence relation holds also for 0 ≤ n < k − 1. In fact, if 0 ≤ n < k − 1, from Lemma 
1 we have

which assert that the recurrence relation above holds also for 0 ≤ n < k − 1. That is, we have

Solve the Equation (7) for Q�

n+1(x;k, �) and substitute it into (8). Then we have

3.2. Differential equation that Q
n
(x;k, �) satisfies

In this subsection, by making use of the results given in the preceding subsection we shall give a dif-
ferential equation that Q

n
(x;k, �) satisfies. The main theorem is

Theorem 1  For an arbitrary n ≥ 0, the function Q
n
(x;k, �) satisfies the following differential equation.

(5)

∞∑

n=−1

(n + 1)Q
n+1

(x;k, �)tn −

∞∑

n=0

2nxQ
n
(x;k, �)tn

+

∞∑

n=k−1

(n − k + 1)Q
n−k+1

(x;k, �)tn −

∞∑

n=0

2�xQ
n
(x;k, �)tn

+

∞∑

n=k−1

k�Q
n−k+1

(x;k, �)tn = 0.

(6)
(n + k� − k + 1)Q

n−k+1
(x;k, �) + (n + 1)Q

n+1
(x;k, �)

− 2(n + �)xQ
n
(x;k, �) = 0, n ≥ k − 1.

(7)
Q

�

n−k+1
(x;k, �) = 2�Q

n
(x;k, �) + 2xQ�

n
(x;k, �)

− Q�

n+1
(x;k, �), n ≥ k − 1.

2(� − 1)(n + k�)Q
n
(x;k, �) + 2(� − 1)(k − 1)xQ�

n
(x;k, �)

− k(� − 1)Q�

n+1
(x;k, �) = 0, n ≥ k − 1.

Q
n
(x;k, �) =

2n(�)
n

n!
x
n, Q

n+1(x;k, �) =
2n+1(�)

n+1

(n + 1)!
x
n+1,

(8)
2(� − 1)(n + k�)Q

n
(x;k, �) + 2(� − 1)(k − 1)xQ�

n
(x;k, �)

− k(� − 1)Q�

n+1
(x;k, �) = 0, n ≥ 0.

(9)
k(� − 1)Q�

n−k+1
(x;k, �) = −2n(� − 1)Q

n
(x;k, �)

+ 2(� − 1)xQ�

n
(x;k, �), n ≥ k − 1.

(
k

2

)k

Q
(k)

n
(x;k, �) =

k−1∏

r=1

{
(k − 1)x

d

dx
+ (n − k + k(� + k − r))

}
(xQ�

n
(x;k, �) − nQ

n
(x;k, �)).
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Proof  Operate dm∕dxm to both sides of (8) and make use of the Leibniz rule. Then we have

Suppose that � ≠ 1. This equation is equivalent to

Replacing m by m − 1 and n by n − 1, then we have

Repeating this formula, then we obtain

Set m = k. Then, we have

Making use of (9), it is easy to see that our assertion holds for n ≥ k − 1. That is, for n ≥ k − 1 the 
following holds.

In the case of 0 ≤ n < k − 1, considering Remark 1, we see that

which implies that (10) holds also for 0 ≤ n < k − 1. Therefore, if � ≠ 1, we can conclude that (10) 
holds for any n ≥ 0.

In the case of � = 1, note that both sides of (10) are continuous with respect to �. Taking the limit 
� → 1 in (10), we can see that (10) holds also for � = 1 and n ≥ 0.

Example 1  If k = 2, the polynomial Q
n
(x;k, �) is equal to the Gegenbauer polynomial of degree n and 

the differential equation in Theorem 1 is as follows.

which is well known as Gegenbauer’s differential equation.

k(� − 1)Q(m+1)

n+1
(x;k, �) = 2(� − 1)(k − 1)xQ(m+1)

n
(x;k, �)

+ 2(� − 1)(n + k� +m(k − 1))Q(m)

n
(x;k, �), m,n ≥ 0.

Q
(m+1)

n+1
(x;k, �) =

2

k

{
(k − 1)x

d

dx
+ (n −m + k(� +m))

}
Q

(m)

n
(x;k, �),

m,n ≥ 0.

Q
(m)

n
(x;k, �) =

2

k

{
(k − 1)x

d

dx
+ (n −m + k(� +m − 1))

}
Q

(m−1)

n−1
(x;k, �),

m,n ≥ 1.

Q
(m)

n
(x;k, �) =

2

k

{
(k − 1)x

d

dx
+ (n −m + k(� +m − 1))

}

⋅
2

k

{
(k − 1)x

d

dx
+ (n −m + k(� +m − 2))

}

⋯
2

k

{
(k − 1)x

d

dx
+ (n −m + k(� +m − (k − 1)))

}
Q

(m−(k−1))

n−(k−1)
(x;k, �),

m,n ≥ k − 1.

Q
(k)

n
(x;k, �) =

(
2

k

)k−1 k−1∏

r=1

{
(k − 1)x

d

dx
+ (n − k + k(� + k − r))

}
Q

�

n−k+1(x;k, �),

n ≥ k − 1.

(10)

(
k

2

)k

Q
(k)

n
(x;k, �) =

k−1∏

r=1

{
(k − 1)x

d

dx
+ (n − k + k(� + k − r))

}

(xQ�

n
(x;k, �) − nQ

n
(x;k, �)).

xQ
�

n
(x;k, �) − nQ

n
(x;k, �) = 0,

(1 − x2)Q��

n
(x;2, �) − (2� + 1)xQ�

n
(x;2, �) + n(n + 2�)Q

n
(x;2, �) = 0,



Page 6 of 14

Dobashi et al., Cogent Mathematics (2017), 4: 1278830
http://dx.doi.org/10.1080/23311835.2017.1278830

3.3. General solution of differential equation that Q
n
(x;k, �) satisfies

In this subsection, we shall give the general solution at x = 0 of the differential equation that 
Q
n
(x;k, �) satisfies. By Theorem 1, the differential equation that we consider is as follows.

To solve this equation, we use the power series method. Since x = 0 is a regular point of the Equation 
(11), we set

It is clear that

Substitute (12), (13) into (11). Hence, we obtain

Comparing the coefficients of xm in (14), then we have

which is equivalent to

For each � ∈ N
0
 and each p ∈ N

0
 such that 0 ≤ p < k, set

Repeating (15), it is easy to see that

where

(11)
(
k

2

)k

y
(k) =

k−1∏

r=1

{
(k − 1)x

d

dx
+ (n − k + k(� + k − r))

}
(xy� − ny).

(12)y =

∞∑

m=0

a
m
x
m.

(13)y
� =

∞∑

m=1

ma
m
x
m−1, y

(k) =

∞∑

m=0

(m + k)!

m!
a
m+k

x
m.

(14)

(
k

2

)k ∞∑

m=0

(m + k)!

m!
a
m+k

x
m

=

∞∑

m=0

(m − n)a
m

{
k−1∏

r=1

{
m(k − 1) + (n − k + k(� + k − r))

}
}
x
m.

(
k

2

)k
(m + k)!

m!
a
m+k

= (m − n)a
m

{
k−1∏

r=1

{
m(k − 1) + (n − k + k(� + k − r))

}
}
,

(15)
�
k

2

�k

a
m
=

(m − k)!(m − k − n)
k−1∏
r=1

�
(m − k)(k − 1) + (n − k + k(� + k − r))

�

m!
a
m−k

.

m = k� + p.

(16)

a
k𝓁+p

=
(k(𝓁 − 1) + p)!(k(𝓁 − 2) + p)!⋯ p!(k(𝓁 − 1) + p − n)(k(𝓁 − 2) + p − n)⋯ (p − n)

(k𝓁 + p)!(k(𝓁 − 1) + p)!⋯ (k + p)!

× a
p

(
2

k

)k𝓁 k−1∏

r=1

A
r
,
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By simple calculations, we have

and

Further, we know the following formula (cf. Prudnikov, Brychkov, & Marichev, 1986),

Substitute (17), (18) and (19) into (16). Hence, we obtain

Thus, we have

Therefore, we obtain the desired result. That is, set

We obtain the following.

Theorem 2  The functions xpF
k,�,p(x) (p = 0, 1,… , k − 1) are the linearly independent solutions at x = 0 

of (11). In particular, its general solution at x = 0 is given by

A
r
= ((k(𝓁 − 1) + p)(k − 1) + n − k + k(� + k − r))

× ((k(𝓁 − 2) + p)(k − 1) + n − k + k(� + k − r))

×⋯ × (p(k − 1) + n − k + k(� + k − r)).

(17)
(k(𝓁 − 1) + p − n)(k(𝓁 − 2) + p − n)⋯ (p − n)

= k𝓁
(
𝓁 − 1 +

p − n

k

)(
𝓁 − 2 +

p − n

k

)
⋯

(
p − n

k

)
= k𝓁

(
p − n

k

)

𝓁

,

(18)

A
r
= (k(k − 1))𝓁 ×

(
𝓁 − 1 +

p(k − 1) + n − k + k(� + k − r)

k(k − 1)

)

×

(
𝓁 − 2 +

p(k − 1) + n − k + k(� + k − r)

k(k − 1)

)

×⋯ ×

(
p(k − 1) + n − k + k(� + k − r)

k(k − 1)

)

= (k(k − 1))𝓁
(
p(k − 1) + n − k + k(� + k − r)

k(k − 1)

)

𝓁

.

(19)(k𝓁 + p)! = kk𝓁p!𝓁!

(
p + 1

k

)

𝓁

(
p + 2

k

)

𝓁

⋯

(
k − 1

k

)

𝓁

(
k + 1

k

)

𝓁

⋯

(
p + k

k

)

𝓁

.

a
k𝓁+p

= a
p

2k𝓁(k − 1)(k−1)𝓁
�
p−n

k

�

𝓁

∏k−1

r=1

�
p(k−1)+n−k+k(�+k−r)

k(k−1)

�

𝓁

k
k𝓁

�
p+1

k

�

𝓁

�
p+2

k

�

𝓁

⋯

�
k−1

k

�

𝓁

�
k+1

k

�

𝓁

⋯

�
p+k

k

�

𝓁

𝓁!
.

∞∑

�=0

a
k�+p

x
k�+p = a

p
x
p

×
k
F
k−1

(
p−n

k
,

p(k−1)+n−k+k(�+k−1)

k(k−1)
, … ,

p(k−1)+n−k+k(�+1)

k(k−1)
p+1

k
,

p+2

k
, … ,

k−1

k
,

k+1

k
, … ,

p+k

k

; (k − 1)k−1
(
2x

k

)k
)
.

F
k,�,p

(x)

=
k
F
k−1

(
p−n

k
,

p(k−1)+n−k+k(�+k−1)

k(k−1)
, … ,

p(k−1)+n−k+k(�+1)

k(k−1)
p+1

k
,

p+2

k
, … ,

k−1

k
,

k+1

k
, … ,

p+k

k

; (k − 1)k−1
(
2x

k

)k
)
.
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where a0,… , a
k−1 are arbitrary constants.

Remark 2  We choose ��, p� ∈ N0 such that

Then F
k,�,p� (x) is a polynomial of degree k�′. Thus, xp

�

F
k,�,p� (x) is a polynomial of degree n, and differs 

only by a constant from Q
n
(x;k, �).

4. Polynomials R
n
(x;k, j)

Let k, j be positive integers. Unless otherwise noted, we fix k, j. As described in  Section 1, we define 
the functions R

n
(x;k, j), n = 0, 1, 2,… , by

For n ∈ N0, set

Then we obtain

Lemma 2  The function R
n
(x;k, j) has the following expression.

If I(k, j,n) = �, we mean R
n
(x;k, j) ≡ 0.

Proof  Making use of the Taylor expansion for the exponential function exp x, it is easy to see that

For n ∈ N0 there exist p, q ∈ N0 such that

if and only if

which are equivalent to

Therefore, we obtain the desired result.

k−1∑

p=0

a
p
x
p
F
k,�,p(x),

n = k�� + p�, 0 ≤ p
�
< k.

(20)exp(tkx − tk+j) =

∞∑

n=0

R
n
(x;k, j)tn, −∞ < x < ∞, −∞ < t < ∞.

(21)I(k, j,n) =

{
q ∈ N0

|||||
0 ≤ q ≤

[
n

k + j

]
, k|(n − (k + j)q)

}
.

R
n
(x;k, j) =

∑

q∈I(k,j,n)

(−1)q
(
n−(k+j)q

k

)
!q!

x
n−(k+j)q

k .

exp(tkx − tk+j) = exp(tkx) exp(−tk+j)

=

∞∑

p=0

(tkx)p

p!

∞∑

q=0

(−tk+j)q

q!

=

∞∑

p,q=0

(−1)qxp

p!q!
t
kp+(k+j)q.

n = kp + (k + j)q

kp = n − (k + j)q, 0 ≤ q ≤

[
n

k + j

]
,

k|(n − (k + j)q), 0 ≤ q ≤

[
n

k + j

]
.
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4.1. Recurrence relations for R
n
(x;k, j)

In this subsection, we shall give recurrence relations for the functions R
n
(x;k, j).

Set

Then it is easy to see that the following partial differential equations hold.

We can derive recurrence relations for R
n
(x;k, j) from these differential equations. Rewrite both sides 

of (22) by making use of (20). Then we have

Compare the coefficients of tn in both sides of (24). Then we have

Similarly, by (23), we have the following recurrence relation.

Replacing n by n − j + 1, then we have

Substitute (26), (27) into (25). We have

Replacing n by n − 1, then we obtain

Remark 3  This recurrence relation holds also for k + j > n ≥ j. Suppose that k + j > n ≥ j. Then it is 
easy to see that

It follows from these relations and Lemma 2 that

Φ(x, t) = exp(tkx − tk+j).

(22)
�

�t
Φ(x, t) = (ktk−1x − (k + j)tk+j−1)Φ(x, t),

(23)
�

�x
Φ(x, t) = tkΦ(x, t).

(24)

∞∑

n=−1

(n + 1)R
n+1(x;k, j)t

n =

∞∑

n=k−1

kxR
n−k+1(x;k, j)t

n

−

∞∑

n=k+j−1

(k + j)R
n−k−j+1(x;k, j)t

n.

(25)
(n + 1)R

n+1(x;k, j) = kxRn−k+1(x;k, j)

− (k + j)R
n−k−j+1(x;k, j), n ≥ k + j − 1.

(26)R
�

n
(x;k, j) = R

n−k
(x;k, j), n ≥ k.

(27)R
�

n−j+1(x;k, j) = Rn−k−j+1(x;k, j), n ≥ k + j − 1.

(n + 1)R
n+1(x;k, j) = kxR

�

n+1(x;k, j)

− (k + j)R�
n−j+1(x;k, j), n ≥ k + j − 1.

(k + j)R�
n−j

(x;k, j) = kxR�
n
(x;k, j) − nR

n
(x;k, j), n ≥ k + j.

[
n

k + j

]
= 0,

[
n − j

k + j

]
= 0.

R
n
(x;k, j) =

{
x
n∕k

(n∕k)!
, k|n,

0, otherwise,
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and

Thus, we obtain

Therefore, we can conclude that

4.2. Differential equation that R
n
(x;k, j) satisfies

In this subsection, by making use of the results given in the preceding subsection we shall give a dif-
ferential equation that R

n
(x;k, j) satisfies. The main theorem is

Theorem 3  For an arbitrary n ≥ 0, the function R
n
(x;k, j) satisfies the following differential equation.

Proof  Operate dm∕dxm to both sides of (28) and make use of the Leibniz rule. Then we have

Replacing m by m − 1 and n by n − j(k − 1), then we have

Repeating this formula, then we obtain

Set m = k. Then we have

On the other hand, by (26) we see that

R
n−j

(x;k, j) =

{
1, n − j = 0,

0, otherwise.

kxR
�

n
(x;k, j) − nR

n
(x;k, j) = 0, R

�

n−j
(x;k, j) = 0.

(28)(k + j)R�
n−j

(x;k, j) = kxR�
n
(x;k, j) − nR

n
(x;k, j), n ≥ j.

R
(k+j)

n
(x;k, j) =

(
1

k + j

)k k∏

r=1

{
kx

d

dx
+ ((k − r)(k + j) − n)

}
R
n
(x;k, j).

(k + j)R
(m+1)

n−j
(x;k, j) = kxR(m+1)

n
(x;k, j) + (mk − n)R(m)

n
(x;k, j),

m ≥ 0, n ≥ j.

R
(m)

n−jk
(x;k, j) =

1

k + j

{
kx

d

dx
+ ((m − 1)k − (n − j(k − 1)))

}
R
(m−1)

n−j(k−1)
(x;k, j),

m ≥ 1, n ≥ jk.

R
(m)

n−jk
(x;k, j) =

1

k + j

{
kx

d

dx
+ ((m − 1)k − (n − j(k − 1)))

}

⋅
1

k + j

{
kx

d

dx
+ ((m − 2)k − (n − j(k − 2)))

}

⋯
1

k + j

{
kx

d

dx
+ ((m − k)k − (n − j(k − k)))

}
R
(m−k)

n
(x;k, j),

m ≥ k, n ≥ jk.

(29)

R
(k)

n−jk
(x;k, j) =

(
1

k + j

)k k∏

r=1

{
kx

d

dx
+ ((k − r)k − (n − j(k − r)))

}
R
n
(x;k, j),

n ≥ jk.
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It follows from (29), (30) that

In what follows, we assume that 0 ≤ n < jk. In this case, we have

Take q ∈ I(k, j,n). It follows from (21), (32) that 0 ≤ q < k and there exists r ∈ N0 such that

For such r, we see that

Thus, by Lemma 2 we obtain

Next, we shall show

Set

where note that � < j. By this relation, (26) and Lemma 2, we have

Notice that

It follows from this relation and (35) that (34). Therefore, by (33), (34) we can conclude that our as-
sertion holds also for 0 ≤ n < jk.

Example 2  If k = j = 1, the polynomial R
n
(x;k, j) is essentially equal to the Hermite polynomial of 

degree n and the differential equation in Theorem 3 is as follows.

which is well known as Hermite’s differential equation.

(30)R
(j)

n
(x;k, j) = R

n−jk
(x;k, j), n ≥ jk.

(31)
R
(k+j)

n
(x;k, j) =

(
1

k + j

)k k∏

r=1

{
kx

d

dx
+ ((k − r)(k + j) − n)

}
R
n
(x;k, j),

n ≥ jk.

(32)
n

k + j
<

jk

k + j
< k.

0 < r ≤ k, k − r = q.

{
kx

d

dx
+ ((k − r)(k + j) − n)

}
(−1)q

(
n−(k+j)q

k

)
!q!

x
n−(k+j)q

k = 0.

(33)
k∏

r=1

{
kx

d

dx
+ ((k − r)(k + j) − n)

}
R
n
(x;k, j) = 0.

(34)R
(k+j)

n
(x;k, j) = 0.

n = �k + �
�, �,�� ∈ N0, 0 ≤ �

�
< k,

(35)R
(�)

n
(x;k, j) = R

n−�k
(x;k, j) = R

�
� (x;k, j) =

∑

q∈I(k,j,�
�
)

(−1)q
(

�
�
−(k+j)q

k

)
!q!

x
�
�
−(k+j)q

k .

R
�
� (x;k, j) =

{
1, �

� = 0,

0, otherwise.

R
��

n
(x;1, 1) −

1

2
xR

�

n
(x;1, 1) +

n

2
R
n
(x;1, 1) = 0,
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4.3. General solution of differential equation that R
n
(x;k, j) satisfies

In this subsection, we shall give the general solution at x = 0 of the differential equation that 
R
n
(x;k, j) satisfies. By Theorem 3, the differential equation that we consider is as follows.

To solve this equation, we use the power series method. Since x = 0 is a regular point of the Equation 
(36), we set

Substitute (37) into (36). Hence, we obtain

Comparing the coefficients of xm in (38), then we have

which is equivalent to

For each � ∈ N0 and each p ∈ N0 such that 0 ≤ p < k + j, set

Repeating (39), it is easy to see that

where

By simple calculations, we have

(36)y
(k+j) =

(
1

k + j

)k k∏

r=1

{
kx

d

dx
+ ((k − r)(k + j) − n)

}
y.

(37)y =

∞∑

m=0

a
m
x
m.

(38)
∞∑

m=0

(m + k + j)!

m!
a
m+k+j

x
m =

(
1

k + j

)k ∞∑

m=0

a
m

{
k∏

r=1

{
km + ((k − r)(k + j) − n)

}
}
x
m
.

(m + k + j)!

m!
a
m+k+j

=

(
1

k + j

)k

a
m

k∏

r=1

{
km + ((k − r)(k + j) − n)

}
,

(39)
a
m
=

�
1

k + j

�k (m − k − j)!
k∏
r=1

(km − kr − jr − n)

m!
a
m−k−j

.

m = (k + j)� + p.

(40)

a
(k+j)𝓁+p

=
((k + j)(𝓁 − 1) + p)!((k + j)(𝓁 − 2) + p)!⋯ p!

((k + j)𝓁 + p)!((k + j)(𝓁 − 1) + p)!⋯ (k + j + p)!

× a
p

(
1

k + j

)k𝓁 k∏

r=1

B
r
,

B
r
= (k((k + j)(𝓁 − 1) + p) − kr − jr − n)

× (k((k + j)(𝓁 − 2) + p) − kr − jr − n)

×⋯ × (kp − kr − jr − n).
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Further, replace k by k + j in (19) and substitute it and (41) into (40). Hence, we obtain

Thus, we have

Therefore, we obtain the desired result. That is, set

We obtain the following.

Theorem 4  The functions xpG
k,j,p(x) (p = 0, 1,… , k + j − 1) are the linearly independent solutions at 

x = 0 of (36). In particular, its general solution at x = 0 is given by

where a0,… , a
k+j−1 are arbitrary constants.

Remark 4  Assume that R
n
(x;k, j) is not identically equal to 0. Then we have I(k, j,n) ≠ �. Take 

q ∈ I(k, j,n) and set

Then we have

which means G
k,j,p�� (x) is a polynomial. Thus, xp

��

G
k,j,p�� (x) is a polynomial solution of (36), and differs 

only by a constant from R
n
(x;k, j).

(41)

B
r
= (k(k + j))𝓁 ×

(
𝓁 − 1 +

kp − kr − jr − n

k(k + j)

)

×

(
𝓁 − 2 +

kp − kr − jr − n

k(k + j)

)

×⋯ ×

(
kp − kr − jr − n

k(k + j)

)

= (k(k + j))𝓁
(
kp − kr − jr − n

k(k + j)

)

𝓁

.

a
(k+j)𝓁+p

=

a
p
k
k𝓁

k∏
r=1

�
kp−kr−jr−n

k(k+j)

�

𝓁

(k + j)(k+j)𝓁
�
p+1

k+j

�

𝓁

�
p+2

k+j

�

𝓁

⋯

�
k+j−1

k+j

�

𝓁

�
k+j+1

k+j

�

𝓁

⋯

�
p+k+j

k+j

�

𝓁

𝓁!
.

∞∑

�=0

a
(k+j)�+p

x
(k+j)�+p = a

p
x
p

×
k
F
k+j−1

(
kp−k−j−n

k(k+j)
,

kp−2k−2j−n

k(k+j)
, … ,

kp−k2−jk−n

k(k+j)
p+1

k+j
,

p+2

k+j
, … ,

k+j−1

k+j
,

k+j+1

k+j
, … ,

p+k+j

k+j

; k
k

(
x

k + j

)k+j
)
.

G
k,j,p

(x) =
k
F
k+j−1

(
kp−k−j−n

k(k+j)
,

kp−2k−2j−n

k(k+j)
, … ,

kp−k2−jk−n

k(k+j)
p+1

k+j
,

p+2

k+j
, … ,

k+j−1

k+j
,

k+j+1

k+j
, … ,

p+k+j

k+j

; k
k

(
x

k + j

)k+j
)
.

k+j−1∑

p=0

a
p
x
p
G
k,j,p(x),

n − (k + j)q = kp�, p
� ∈ N0,

p
� = (k + j)q� + p��, q

�, p�� ∈ N0, 0 ≤ p
��
< k + j,

q = kq�� + p���, q
��, p��� ∈ N0, 0 ≤ p

���
< k,

p = p��, r = k − p���.

kp − kr − jr − n

k(k + j)
= −1 − q� − q��,
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