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The combined reproducing kernel method and 
Taylor series to solve nonlinear Abel’s integral 
equations with weakly singular kernel
Azizallah Alvandi1 and Mahmoud Paripour2*

Abstract: The reproducing kernel method and Taylor series to determine a solu-
tion for nonlinear Abel’s integral equations are combined. In this technique, we first 
convert it to a nonlinear differential equation by using Taylor series. The approxi-
mate solution in the form of series in the reproducing kernel space is presented. 
The advantages of this method are as follows: First, it is possible to pick any point in 
the interval of integration and as well the approximate solution. Second, numerical 
results compared with the existing method show that fewer nodes are required to 
obtain numerical solutions. Furthermore, the present method is a reliable method to 
solve nonlinear Abel’s integral equations with weakly singular kernel. Some numeri-
cal examples are given in two different spaces.
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1. Introduction
Abel’s integral equation, linear or nonlinear, arises in many branches of scientific fields (Singh, 
Pandey, & Singh, 2009), such as seismology, microscopy, radio astronomy, atomic scattering, elec-
tron emission, radar ranging, X-ray radiography, plasma diagnostics, and optical fiber evaluation. A 
variety of numerical and analytic methods for solving these equations are presented. In Liu and Tao 
(2007) mechanical quadrature methods, wavelet Galerkin method (Maleknjad, Nosrati, & Najafi, 
2012), homotopy analysis method (Jafarian, Ghaderi, Golmankhaneh, & Baleanu, 2014), modified 
new iterative method (Gupta, 2012), a jacobi spectral collocation scheme (Abdelkawy, Ezz-Eldien, & 
Amin, 2015), a collocation method (Saadatmandi & Dehghan, 2008), block-pulse functions approach 
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(Nosrati Sahlan, Marasi, & Ghahramani, 2015), Bernstein polynomials (Alipour & Rostamy, 2011) and 
Legendre wavelets (Yousefi, 2006). For further see Kilbas and Saigo (1999), Kumar, Singh, and Dixit 
(2011), Pandey, Singh, and Singh (2009), Wang, Zhu, and Fečkan (2014).

The reproducing kernel functions have been used as basis functions of the reproducing kernel 
method for approximating the solution of different types of differential and integral equations such 
as singular integral equation with cosecant kernel (Du & Shen, 2008), Fredholm integro-differential 
equations with weak singularity (Du Zhao, & Zhao, 2014), Fredholm integral equation of the first kind 
(Du & Cui, 2008), multiple solutions of nonlinear boundary value problems (Abbasbandy, Azarnavid, 
& Alhuthali, 2015), nonlinear delay differential equations of fractional order (Ghasemi, Fardi, & 
Ghaziani, 2015), nonlinear Volterra integro-differential equations of fractional order (Jiang & Tian, 
2015) and singularly perturbed boundary value problems with a delay (Geng & Qian, 2015). For fur-
ther see Alvandi, Lotfi, and Paripour (2016), Geng, Qian, and Li (2014), Jordão and Menegatto (2014), 
Moradi, Yusefi, Abdollahzadeh, and Tila (2014), Xu and Lin (2016).

The aim of this paper is to introduce the reproducing kernel method to solve nonlinear Abel’s inte-
gral equation. The standard form of equation (Wazwaz, 1997) is given by

where the function f(x) is a given real-valued function, and F(u(x)) is a nonlinear function of u(x). 
Recall that the unknown function u(x) occurs only inside the integral sign for the Abel’s integral 
equation.

This paper is organized as six sections including the introduction. In the next section, we introduce 
construction of the method in the reproducing kernel space for solving Equation (1.1). The analytical 
solution is presented in Section 3. The implementations of the method is provided in Section 4. 
Numerical findings demonstratig the accuracy of the new numerical scheme are reported in Section 5. 
The last section is a brief conclusion.

2. Construction of the method
In this section, we construct the space Wm

2
[0, 1] and then formulate the reproducing kernel function 

Rx(y) in the space Wm
2
[0, 1]. The dimensional space is finite. First, we present some necessary defini-

tions from reproducing kernel theory.

Definition 2.1  Let ℍ = {u(x)|u(x) is a real-valued function or complex function, x ∈ X, X is a abstract 
set} be a Hilbert space, with inner product

Definition 2.2  A function space Wm
2
[0, 1] is defined by Wm

2
[0, 1] = {u(m−1)

(x) is an absolutely continu-
ous real-valued function on [0, 1] and u(m)

(x) ∈ L2[0, 1]}.

The inner product and norm in Wm
2
[0, 1] are given respectively by

and

(1.1)f (x) =

x

�
0

1√
x − t

F(u(t)) dt, 0 < x ≤ 1,

⟨u(x), v(x)⟩
ℍ
, (u(x), v(x) ∈ ℍ).

(2.1)⟨u, v⟩Wm
2
=

m−1�
i=0

u(i)(0)v(i)(0) +

1

∫
0

u(m)
(x)v(m)

(x) dx,

(2.2)‖u‖Wm
2
=

√⟨u,u⟩Wm
2
, u, v ∈Wm

2
[0, 1].
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Definition 2.3  If ∀x ∈ X, there exists a unique function Rx(y) in ℍ, for each fixed y ∈ X then Rx(y) ∈ ℍ 
and any u(x) ∈ ℍ, which satisfies ⟨u(y),Rx(y)⟩Wm

2
= u(x). Then, Hilbert space ℍ is called the reproducing 

kernel space and Rx(y) is called the reproducing kernel of ℍ.

Corollary 2.1  The space Wm
2
[0, 1] is a reproducing kernel space.

The reproducing kernel Rx(y) can be denoted by

where coefficients pi(y), qi(y), {i = 1, 2,… , 2m}, could be obtained by solving the following 
equations

For more details, see Cui and Lin (2009).

2.1. A transformation of the Equation (1.1)
Using modified Taylor series, the nonlinear Abel’s integral equations with weakly singular kernel 
transform into nonlinear differential equations that can be solved easily.

With the Taylor series expansion of F(u(t)) expanded about the given point x belonging to the in-
terval [0, 1], we have the Taylor series approximation of F(u(t)) in the following form

We use the truncated Taylor series and substitute it instead of the nonlinear term of Equation (1.1),

3. The analytical solution
In this section, we present a nonlinear differential operator and a normal orthogonal system of the 
space Wm

2
[0, 1]. After that, an iterative method of obtaining the solution is introduced in the space 

Wm
2
[0, 1].

First of all, we define an invertible bounded linear operator as

such that

(2.3)Rx(y) =

⎧
⎪⎪⎨⎪⎪⎩

R(x, y) =
2m∑
i=1

pi(y)x
i−1, x ≤ y,

R(y, x) =
2m∑
i=1

qi(y)x
i−1, x > y,

(2.4)
�
iRy(x)

�xi
|||x=y+ =

�
iRy(x)

�xi
|||x=y− , i = 0, 1, 2,… , 2m − 2,

(2.5)(−1)
m

(
�
2m−1R

y
(x)

�x2m−1

|||x=y+ −
�
2m−1R

y
(x)

�x2m−1

|||x=y−
)

= 1,

(2.6)

⎧
⎪⎨⎪⎩

�
i Ry (0)

�xi
− (−1)m−i−1 �

2m−i−1Ry (0)

�x2m−i−1 = 0, i = 0, 1,… ,m − 1,

�
2m−i−1Ry (1)

�x2m−i−1 = 0, i = 0, 1,… ,m − 1.

(2.7)F(u(t)) = F(u(x)) + F�(u(x))u�(x)(t − x) +⋯ .

(2.8)f (x) =

x

∫
0

1√
x − t

F(u(t)) dt = H(x,u(x),u�(x),… ,u(n)(x)).

(3.1)�:Wm
2
[0, 1] ⟶Wm−n

2
[0, 1],

(3.2)�u(x) = u(x)f (x) = u(x)H(x,u(x),u�(x),… ,u(n)(x)) = G(x,u(x),u�(x),… ,u(n)(x)).
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Next, we construct an orthogonal function system of Wm
2
[0, 1].

Let �i(x) = f (xi)Rxi (x) and �i(x) = �
∗
�i(x), where 

{
xi
}∞

i=1
 is dense on [0, 1] and �∗ is the adjoint op-

erator of �. From the properties of the reproducing kernel function Rx(y), we have ⟨u(x),�i(x)⟩ = u(xi) 
for every u(x) ∈Wm

2
[0, 1].

Theorem 3.1  If 
{
xi
}∞

i=1
 is dense in the interval [0, 1] , then 

{
�i(x)

}∞

i=1
 is the complete system of  Wm

2
[0, 1].

Proof  Note that 
{
xi
}∞

i=1
 is dense in the interval [0, 1] . For u(x) ∈Wm

2
[0, 1], if

from the density of 
{
xi
}∞

i=1
 and continuity of u(x) , then we have u(x) ≡ 0.

The orthonormal system {𝜓̄i(x)}
∞

i=1 of Wm
2
[0, 1] is constructed from {�i(x)}

∞

i=1 by using the Gram–
Schmidt algorithm, and then the approximate solution will be obtained by calculating a truncated 
series based on these functions, such that

where �ik are orthogonal coefficients. However, Gram–Schmidt algorithm has some drawbacks such 
as high volume of computations and numerical instability, to fix these flaws see Moradi et al. (2014).

Theorem 3.2  Let 
{
xi
}∞

i=1
 be dense in the interval [0, 1]. If the Equation (1.1) has a unique solution, then 

the solution satisfies the form

Proof  Let u(x) be the solution of Equation (1.1) u(x) is expanded in Fourier series, it has

The proof is complete. � ✷

The Equation (3.2) is nonlinear, that is G(x,u(x),u�(x),… ,u(n)(x)) depend on u and its derivatives, 
then its solution can be obtained by the following iterative method.

By truncating the series of the left-hand side of (3.5), we obtain the approximate solution of 
Equation (1.1)

uN(x) in (3.6) is the N-term intercept of u(x) in (3.5), so uN(x) ⟶ u(x) in Wm
2
[0, 1] as N⟶ ∞.

(3.3)⟨u(x),�i(x)⟩ = ⟨u(x),�∗
�i(x)⟩ = ⟨�u(x),�i(x)⟩ = ⟨u(x),�i(x)⟩ = u(xi) = 0, (i = 1, 2,…),

(3.4)𝜓̄i(x) =

i∑
k=1

𝛽ik𝜓k(x), (𝛽ii > 0, i = 1, 2,…),

(3.5)u(x) =

∞∑
i=1

i∑
k=1

𝛽ikG(xk,u(xk),u
�
(xk),… ,u(n)(xk))𝜓̄i(x).

u(x) =

∞�
i=1

⟨u(x), 𝜓̄i(x)⟩𝜓̄i(x) =
∞�
i=1

i�
k=1

𝛽ik⟨u(x),𝜓k(x)⟩𝜓̄i(x)

=

∞�
i=1

i�
k=1

𝛽ik⟨u(x),�∗
𝜑k(x)⟩𝜓̄i(x) =

∞�
i=1

i�
k=1

𝛽ik⟨�u(x),𝜑k(x)⟩𝜓̄i(x)

=

∞�
i=1

i�
k=1

𝛽ik⟨G(x,u(x),u�(x),… ,u(n)(x)),𝜑k(x)⟩𝜓̄i(x)

=

∞�
i=1

i�
k=1

𝛽ikG(xk,u(xk),u
�
(xk),… ,u(n)(xk))𝜓̄i(x).

(3.6)uN(x) =

N∑
i=1

i∑
k=1

𝛽ikG(xk,u(xk),u
�
(xk),… ,u(n)(xk))𝜓̄i(x).
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4. Implementations of the method
Let x

1
= 0 and u(i)(x

1
) = 0, (i = 1, 2…n), then G(x

1
,u(x

1
),u�(x

1
),… ,u(n)(x

1
)) is known. We put

where

Let

Next, the convergence of uN(x) will be proved.

4.1. Convergence of method

Theorem 4.1.1  Suppose ‖uN(x)‖Wm
2
 is bounded in (4.1), if {xi}

∞

i=1 is dense in [0, 1],  then the N-term ap-
proximate solution uN(x) converges to the exact solution u(x) of Equation (1.1) and the exact solution 
is expressed as

where Bi is given by (4.1).

Proof  The convergence of uN(x) will be proved. From (4.1), one gets

From the orthogonality of {𝜓̄i(x)}
∞

i=1, it follows that

The sequence ‖uN(x)‖Wm
2
 is monotone increasing. Due to ‖uN(x)‖Wm

2
 being bounded, {‖uN(x)‖Wm

2
} is 

convergent as N⟶ ∞. Then there is a constant c such that

(4.1)

G(x
1
,u

0
(x
1
),u�

0
(x
1
),… ,u(n)

0
(x
1
)) = G(x

1
,u(x

1
),u�(x

1
),… ,u(n)(x

1
)).

u
N
(x) =

N∑
i=1

B
i
𝜓̄
i
(x),

Bi =

i∑
k=1

�ikG(xk,ui(xk),u
�

i (xk),… ,u(n)
i
(xk)).

B
1
= 𝛽

11
G(x

1
,u

0
(x
1
),u�

0
(x
1
),… ,u(n)

0
(x
1
)),

u
1
(x) = B

1
𝜓̄
1
(x),

B
2
=

2∑
k=1

𝛽
2k
G(x

k
,u

1
(x
k
),u�

1
(x
k
),… ,u(n)

1
(x
k
)),

u
2
(x) = B

1
𝜓̄
1
(x) + B

2
𝜓̄
2
(x),

⋮

B
N
=

N∑
k=1

𝛽
Nk
G(x

k
,u

N−1
(x
k
),u�

N−1
(x
k
),… ,u(n)

N−1
(x
k
)),

u
N
(x) =

N∑
i=1

B
i
𝜓̄
i
(x).

(4.2)u(x) =

∞∑
i=1

Bi𝜓̄i(x),

(4.3)uN(x) = uN−1(x) + BN𝜓̄N(x).

(4.4)‖uN(x)‖2Wm
2

= ‖uN−1(x)‖2Wm
2

+ ‖BN‖2.
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It implies that

let m > N, in view of (um − um−1
) ⟂ (um−1

− um−2
) ⟂ ⋯ ⟂ (uN+1 − uN), it follows that

Considering the completeness of Wm
2
[0, 1], it has

It is proved that u(x) is the solution of Equation (1.1).

Hence

The proof is complete. � ✷

Theorem 4.1.2  If uN(x)
‖⋅‖

W
m
2

⟶ u(x) and xN ⟶ y (N⟶ ∞), then

Proof  We will prove u(i)
N
(xN) ⟶ u(i)(y), (N⟶ ∞) and i = 0, 1, 2,… ,n. Observing that

It follows that

From the convergence of uN(x), there exist constants M
1
∈ ℕ and M ∈ ℝ, such that

Since

It follows that |u(i)
N
(xN) − u

(i)
(y)| ⟶ 0 as xN ⟶ y from ‖u(i)

N
(x)‖Wm

2
≤ M‖u(x)‖Wm

2
.

(4.5)
∞∑
i=1

B2i = c.

Bi =

i∑
k=1

�ikG(xk,ui(xk),u
�

i (xk),… ,u(n)
i
(xk)).

(4.6)

‖(um − uN)‖2Wm
2

= ‖um − um−1
+ um−1

− um−2
+⋯ + uN+1 − uN‖2Wm

2

= ‖um − um−1
‖2
Wm
2

+ ‖um−1
− um−2

‖2
Wm
2

+⋯ + ‖uN+1 − uN‖2Wm
2

=

m�
i=N+1

(Bi)
2
⟶ 0, (N⟶ ∞).

uN(x)
‖⋅‖

W
m
2

⟶ u(x), (N⟶ ∞).

u(x) =

∞∑
i=1

Bi𝜓̄i(x).

(4.7)G(xN,uN(xN),u
�

N(xN),… ,u(n)
N
(xN)) ⟶ G(y,u(y),u�(y),⋯ ,u(n)(y)) (N⟶ ∞).

|||u
(i)

N
(xN) − u

(i)
(y)

||| =
|||u

(i)

N
(xN) − u

(i)

N
(y) + u(i)

N
(y) − u(i)(y)

|||
≤ |||u

(i)

N
(xN) − u

(i)

N
(y)

||| +
|||u

(i)

N
(y) − u(i)(y)

|||

���u
(i)

N
(xN) − u

(i)

N
(y)

��� =
�����
⟨uN(x), �

i

�yi
(RxN

(x) − Ry(x))⟩
�����

≤ ��uN(x)��Wm
2

�����
�
i

�yi
(RxN

(x) − Ry(x))
�����Wm

2

.

‖u(i)
N
(x)‖Wm

2
≤ M‖u(x)‖Wm

2
, for N ≥ M

1
and i = 0, 1, 2,… ,n.

‖RxN (x) − Ry(x)‖Wm
2
⟶ 0 (N⟶ ∞).
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Hence, as xN ⟶ y it shows that

It follows that

Consequently, the method mentioned is convergent. � ✷

5. Applications and numerical results
The reproducing kernel method for solving nonlinear Abel’s integral equations with weakly singular 
kernel will be illustrated by studying the following examples. For solving these examples, N = 10 
and m > n are considered, where N is the number of terms of the Fourier series of the unknown 
function u(x) and n is the number of terms of the Taylor series. The approximate solutions obtained 
of Equation (4.1) are compared with the exact solution of each example which are found to be in 
good agreement with each other. The examples are computed using Mathematica 8.0.

Example 5.1  Consider the following nonlinear Abel integral equation (Wazwaz, 2011):

the exact solution of this problem is u(x) = ex+1.

The approximate solution by the proposed method for n = 2 is computed. The Taylor series ap-
proximation of ln(u(t)) is used in the following form

The absolute errors obtained in spaces W6

2
[0, 1], W8

2
[0, 1] are given in Table 1. This is an indication 

of accuracy on the reproducing Kernel space. However, by increasing m, the approximate solution 
improves.

The comparisons between the exact solution and the numerical solutions for m = 8 are shown in 
Figure 1. We can see clearly that the numerical solutions and exact solution coincide completely. 
Figure 2 reveals the absolute errors in spaces W6

2
[0, 1],W8

2
[0, 1], respectively.

u(i)
N
(xN) ⟶ u(i)(y) (N⟶ ∞).

(4.8)G(xN,uN(xN),u
�

N(xN),… ,u(n)
N
(xN)) ⟶ G(y,u(y),u�(y),… ,u(n)(y)) (N⟶ ∞).

2

3
x

1

2 (3 + 2x) =

x

∫
0

1√
x − t

ln(u(t)) dt,

(5.1)ln(u(t)) = ln(u(x)) +
u�(x)(t − x)

u(x)
+

(−(u�(x))2 + u(x)u��(x))(t − x)2

2(u(x))2
.

Table 1. Numerical results of Ex. 1
Node |u

N
(x) − u(x)|

W
6

2

|u
N
(x) − u(x)|

W
8

2

0.0 3.02630E−10 1.79190E−12

0.1 3.06130E−10 1.81322E−12

0.2 3.09631E−10 1.83364E−12

0.3 3.13138E−10 1.85496E−12

0.4 3.16652E−10 1.87672E−12

0.5 3.20175E−10 1.89715E−12

0.6 3.23709E−10 1.91758E−12

0.7 3.27254E−10 1.93801E−12

0.8 3.30814E−10 1.96110E−12

0.9 3.34385E−10 1.98153E−12

1.0 3.37971E−10 2.00195E−12
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Example 5.2  In the second example, we solve the nonlinear Abel integral equation (Wazwaz, 2011):

the exact solution is u(x) = cos(x + 1).

The approximate solution by the proposed method for n = 1 is computed. The Taylor series ap-
proximation of cos−1(u(t)) is used in the following form

The absolute errors obtained in spaces W5

2
[0, 1], W7

2
[0, 1] are given in Table 2. This is an indication of 

accuracy on the reproducing Kernel space. However, by increasing m, the approximate solution 
improves.

The comparisons between the exact solution and the numerical solutions for m = 7 are shown in 
Figure 3. We can see clearly that the numerical solutions and exact solution coincide completely. 
Figure 4 reveals the absolute errors in spaces W5

2
[0, 1],W7

2
[0, 1], respectively.

Example 5.3  Let us consider the nonlinear Abel integral equation (Wazwaz, 2011):

the exact solution of this problem is u(x) = 1 + x.

2

3
x

1

2 (3 + 2x) =

x

∫
0

1√
x − t

cos−1(u(t)) dt,

(5.2)cos−1(u(t)) = cos−1(u(x)) −
u�(x)(t − x)√
1 − u2(x)

.

1

15
x

1

2 (30 + 40x + 16x2) =

x

∫
0

1√
x − t

u2(t) dt,

Figure 1. The comparisons 
between exact and numerical 
solution for m = 8.
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1

2

3

4

5

6

7

Approximate solution

Exact solution

Figure 2. The absolute errors 
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8
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The approximate solution by the proposed method for n = 2 is computed. The Taylor series 
approximation of u2(t) is used in the following form

The absolute errors obtained in spaces W5

2
[0, 1], W7

2
[0, 1] are given in Table 3. This is an indication of 

accuracy on the reproducing Kernel space. However, by increasing m, the approximate solution 
improves.

(5.3)u2(t) = u2(x) + (u2)�(x)(t − x) +
1

2
(u2)��(x)(t − x)2.

Table 2. Numerical results of Ex. 2
Node |u

N
(x) − u(x)|

W
5

2

|u
N
(x) − u(x)|

W
7

2

0.0 1.54000E−9 3.08260E−11

0.1 1.39704E−9 2.79418E−11

0.2 1.29331E−9 2.58670E−11

0.3 1.21641E−9 2.43285E−11

0.4 1.15773E−9 2.31558E−11

0.5 1.11194E−9 2.22403E−11

0.6 1.07561E−9 2.15113E−11

0.7 1.04614E−9 2.09222E−11

0.8 1.02112E−9 2.04518E−11

0.9 9.97839E−10 2.01288E−11

1.0 9.73064E−10 2.00633E−11

Figure 3. The comparisons 
between numerical and exact 
solution for m = 7.
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Figure 4. The absolute errors 
in space W5

2
[0, 1] and W7

2
[0, 1], 

respectively.
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The comparisons between the exact solution and the numerical solutions for m = 7 are shown in 
Figure 5. We can see clearly that the numerical solutions and exact solution coincide completely. 
Figure 6 reveals the absolute errors in spaces W5

2
[0, 1],W7

2
[0, 1], respectively.

Table 3. Numerical results of Ex. 3
Node |u

N
(x) − u(x)|

W
5

2

|u
N
(x) − u(x)|

W
7

2

0.0 7.65597E−10 7.65610E−13

0.1 7.74042E−10 7.74047E−13

0.2 7.82533E−10 7.82485E−13

0.3 7.91071E−10 7.91145E−13

0.4 7.99655E−10 7.99583E−13

0.5 8.08287E−10 8.08242E−13

0.6 8.16966E−10 8.16902E−13

0.7 8.25692E−10 8.25784E−13

0.8 8.34466E−10 8.34444E−13

0.9 8.43288E−10 8.43325E−13

1.0 8.52157E−10 8.52207E−13

Figure 5. The comparisons 
between numerical and exact 
solution for m = 7.
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Figure 6. The absolute errors 
in spaces W5
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Example 5.4  Now, we consider the singular nonlinear Abel integral equation (Wazwaz, 2011):

the exact solution is u(x) = 1 + ln(x + 1).

The approximate solution by the proposed method for n = 1 is computed. The Taylor series 
approximation of eu(t) is used in the following form

The absolute errors obtained in spaces W5

2
[0, 1], W8

2
[0, 1] are given in Table 4. This is an indication of 

accuracy on the reproducing Kernel space. However, by increasing m, the approximate solution 
improves.

2

3
ex

1

2 (3 + 2x) =

x

∫
0

1√
x − t

eu(t) dt,

(5.4)eu(t) = eu(x) + eu(x)u�(x)(t − x).

Figure 7. The comparisons 
between numerical and exact 
solution for m = 8.

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

Approximate solution

Exact solution

Table 4. Numerical results of Ex. 4
Node |u

N
(x) − u(x)|

W
5

2

|u
N
(x) − u(x)|

W
8

2

0.0 3.76495E−7 2.47265E−9

0.1 3.92670E−7 2.63038E−9

0.2 4.07560E−7 2.77181E−9

0.3 4.21260E−7 2.89812E−9

0.4 4.33761E−7 3.01038E−9

0.5 4.45059E−7 3.10962E−9

0.6 4.55221E−7 3.19679E−9

0.7 4.64218E−7 3.27280E−9

0.8 4.72314E−7 3.33846E−9

0.9 4.79246E−7 3.39458E−9

1.0 4.85486E−7 3.44188E−9
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The comparisons between the exact solution and the numerical solutions for m = 8 are shown in 
Figure 7. We can see clearly that the numerical solutions and exact solution coincide completely. 
Figure 8 reveals the absolute errors in spaces W5

2
[0, 1],W8

2
[0, 1], respectively.

6. Conclusions
To numerically solve nonlinear Abel’s integral equations by means of the reproducing kernel meth-
od, the reproducing kernel functions as a basis and Taylor series to remove singularity were used. 
The absolute errors in two spaces were computed. By increasing m, the accuracy of the approximate 
solution improves. So, to get the more accurate result, it is sufficient to increase m. As seen from the 
examples, the method can be accurate and stable.
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