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Stability analysis for a class of nonlinear time-
changed systems
Qiong Wu1*

Abstract: This paper investigates the stability of a class of differential systems 
time-changed by E

t
 which is the inverse of a �-stable subordinator. In order to 

explore stability, a time-changed Gronwall’s inequality and a generalized Itô formula 
related to both the natural time t and the time-change E

t
 are developed. For 

different time-changed systems, corresponding stability behaviors such as 
exponential sample-path stability, pth moment asymptotic stability and pth 
moment exponential stability are investigated. Also a connection between the 
stability of the time-changed system and that of its corresponding non-time-
changed system is revealed.

Subjects: Advanced Mathematics; Applied Mathematics; Mathematics & Statistics; Science; 
Statistics & Probability

Keywords: time-changed Gronwall’s inequality; exponential sample-path stability; pth  
moment asymptotic stability; pth moment exponential stability

1. Introduction
Linear and nonlinear systems play an important role in applied areas, for example, control theory, 
mathematical biology, and convex optimization. The stability of linear and nonlinear systems is ex-
tensively discussed in Rugh (1996), Feng, Loparo, Ji, and Chizeck (1992). Focusing on delay phenom-
ena in the natural sciences, the delayed linear and nonlinear systems are developed and the stability 
analysis is performed in Erneux (2009). Fractional systems can be used to describe complex phe-
nomena in engineering. Various kinds of stabilities of linear and nonlinear fractional dynamic sys-
tems are discussed in Matignon (1996). More recently, the following time-changed differential 
systems are studied in Kobayashi (2011),
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where E
t
 is a random time-change denoting a new clock. For instance, E

t
 might represent the busi-

ness time at the calendar time t. Specifically, E
t
 is considered as the general inverse of a �-stable 

subordinator U(t), defined as

where the stable subordinator U(t) with index � ∈ (0, 1) is a strictly increasing �-stable Lévy process 
and takes Laplace transform

In particular, E
t
 is a continuous time-change since U(t) is strictly increasing. For more details on �-sta-

ble Lévy processes and their inverses, please see Janicki and Weron (1994). To our best knowledge, 
there are no results on the stability of any kinds of time-changed differential systems. In this paper, 
the stabilities of various kinds of time-changed differential systems are discussed based on develop-
ing a Gronwall’s inequality and generalized Itô formula.

2. Preliminaries
In this section, several helpful lemmas and definitions are introduced to illustrate the main stability 
results to be considered later. Lemma 2.1 below indicates that the time-change E

t
 is a 

semimartingale.

Lemma 2.1 Grigoriu (2002)    If Xt is an adapted process with càdlàg paths of finite variation on com-
pacts, then Xt is a semimartingale.

Let B
t
 be a standard Brownian motion and E

t
 be the time-change. Consider the following filtration 


t
 generated by B

t
 and E

t

where �1 ∨ �2 denotes the �-field generated by the union �1 ∪ �2 of �-fields �1, �2.

Lemma 2.2 Magdziarz (2010)   The time-changed Brownian motion, BEt, is a square integrable mar-
tingale with respect to the filtration {Et}t≥0, where {t} is the filtration given in Equation (3). The qua-
dratic variation of the time-changed Brownian motion satisfies ⟨BEt ,BEt ⟩ = Et.

From Lemmas 2.1 and 2.2, it is well known that integrals with respect to the time-change, E
t
, and 

the time-changed Brownian motion, B
E
t

, are well-defined. Moreover, the following two lemmas pro-
vide connections among different kinds of time-changed integrals.

Lemma 2.3 [1st Change-of-Variable Formula Kobayashi (2011), Jacod (1978)] Let Et be the (t)-mea-
surable time-change. Suppose �(t) and �(t) are (t)-measurable and integrable. Then, for all t ≥ 0 with 
probability one,

Lemma 2.4 [2nd Change-of-Variable Formula Kobayashi (2011)] Let Et be the (t)-measurable time-
change which is the general inverse �-stable subordinator U(t). Suppose �(t) and �(t) are (t)-measur-
able and integrable. Then, for all t ≥ 0 with probability one,

(1)dX(t) = �(t,X(t)) dt + �(E
t
,X(t)) dE

t
+ �(E

t
,X(t)) dB

E
t

, X(0) = x0 ∈ ℝ
d.

(2)E
t
= inf{s > 0:U(s) > t},

�[exp(−sU(t))] = exp(−ts�).

(3)
t
=
⋂
u>t

{
𝜎
(
B
s
:0 ≤ s ≤ u) ∨ 𝜎

(
E
s
:s ≥ 0)},

∫
Et

0

�(s) ds + ∫
Et

0

�(s) dBs = ∫
t

0

�(Es) dEs + ∫
t

0

�(Es) dBEs
.

∫
t

0

�(s) dEs + ∫
t

0

�(s) dBEs
= ∫

Et

0

�(U(s−)) ds + ∫
Et

0

�(U(s−)) dBs.
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The next lemma reveals a deep connection between the time-changed SDE (4) and its correspond-
ing classical non-time-changed SDE (5).

Lemma 2.5 [Kobayashi (2011) Duality] Let Et be the inverse of a �-stable subordinator U(t).

(1)  If a process Y(t) satisfies the SDE (5), then the process X(t): = Y(Et) satisfies the SDE (4).

(2)  If a process X(t) satisfies the SDE (4), then the process Y(t): = X(U(t−)) satisfies the SDE (5).

Without loss of generality, let X(t): = X(t;x0) be the solution of the time-changed SDE (1) with ini-
tial value x0. Assume that �(t, 0) = �(E

t
, 0) = �(E

t
, 0) = 0 for all t ≥ 0. So SDE (1) admits a trivial 

solution X(t) ≡ 0 corresponding to the initial value x0 = 0. This solution is also called the equilibrium 
position.

Definition 2.1 The trivial solution of SDE (1) is said to be

(1)  exponentially sample-path stable if there is a function �(t):[0,∞) → [0,∞) approaching ∞ as 
t → ∞ and a pair of positive constants � and K such that for every sample path 

 where t ≥ 0 and x0 ∈ ℝ
d is arbitrary;

(2)  pth moment asymptotically stable if there is a function �(t):[0,+∞) → [0,∞) decaying to 0 as 
t → ∞ and a positive constant K such that 

 for all t ≥ 0 and x0 ∈ ℝ
d;

(3)  pth moment exponentially stable if there is a pair of positive constants � and K such that 

 for all t ≥ 0 and x0 ∈ ℝ
d.

Notation: Assume A is a square matrix. Let �(A) be the spectrum of A and Re(�(A)) be the real part 
of eigenvalues of A.

3. Stability analysis of time-changed SDEs
In this section, before investigating the stability of time-changed differential equations, a time-
changed Gronwall’s inequality is developed and a generalized Itô formula related to both the natural 
time and the random time-change is proposed.

Lemma 3.1 Suppose U(t) is a �-stable subordinator and Et is the associated inverse stable subordina-
tor. Let T > 0 and x, K: Ω × [0, T] → ℝ

+
 be t-measurable functions which are integrable with respect to 

Et. Assume u0 ≥ 0 is a constant. Then, the inequality

(4)dX(t) = �(E
t
,X(t)) dE

t
+ �(E

t
,X(t)) dB

E
t

, X(0) = x0;

(5)dY(t) = �(t, Y(t)) dt + �(t, Y(t)) dB
t
, Y(0) = x0;

‖X(t)‖ ≤ K‖x0‖ exp(−��(t)),

�‖Xt(x0)‖p ≤ K‖x0‖p�(t)

�‖Xt(x0)‖p ≤ K‖x0‖p exp(−�t)

(6)x(t) ≤ u0 + �
t

0

K(s)x(s) dEs, 0 ≤ t ≤ T
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implies almost surely

Proof Let

Since K(s) and x(s) are positive, the function y(t) defined in Equation (7) is nondecreasing. Moreover, 
from Equations (6) and (7),

which implies

Applying Lemma 2.4 yields

Actually, for 0 ≤ t ≤ ET, U(t−) is defined as

which means

Also, let � ∈ [0,∞) and � ∈ [0, ET], then it holds from Equations (8) and (9) that

Apply the standard Gronwall inequality path by path to yield

For every t ∈ [0, T], let � = Et. Then, applying first the relation in Equation (9) followed by Lemma 2.4

thereby completing the proof.  ✷

Lemma 3.2 Suppose U(t) is a �-stable subordinator and Et is the associated inverse stable subordina-
tor. Define a filtration {t}t≥0 by t = Et where t is the filtration defined in Equation (3). Let X(t) be a 
process defined by the following time-changed process

where P, Φ, and Ψ are measurable functions such that all integrals are defined. If F:ℝ
+
×ℝ

+
×ℝ

d
→ ℝ 

is a C1,1,2(ℝ
+
×ℝ

+
×ℝ

d;ℝ) function, then with probability one

x(t) ≤ u0 exp
(
�
t

0

K(s) dEs

)
, 0 ≤ t ≤ T.

(7)y(t): = u0 + �
t

0

K(s)x(s) dEs, 0 ≤ t ≤ T.

x(t) ≤ y(t), 0 ≤ t ≤ T,

y(t) ≤ u0 + �
t

0

K(s)y(s) dEs, 0 ≤ t ≤ T.

(8)y(t) ≤ u0 + �
Et

0

K(U(s−))y(U(s−)) ds.

U(t−) = inf
{
s:s ∈ [0, T], Es > t

}
∧ T,

(9)EU(t−) = t and t ≤ U(Et−).

y(U(�−)) ≤ u0 + �
EU(�−)

0

K(U(s−))y(U(s−)) ds = u0 + �
�

0

K(U(s−))y(U(s−)) ds.

x(U(�−)) ≤ y(U(�−)) ≤ u0 exp
(
�
�

0

K(U(s−)) ds

)
.

x(t) ≤ y(t) ≤ y(U(Et−)) ≤ u0 exp
(
�
Et

0

K(U(s−)) ds

)
= u0 exp

(
�
t

0

K(s) dEs

)
,

X(t) = x0 + ∫
t

0

P(s) ds + ∫
t

0

Φ(s) dEs + ∫
t

0

Ψ(s) dBEs
,
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where Ft1, Ft2, and Fx are first derivatives, respectively, and Fxx denotes the second derivative.

Proof Let Y(t): =
⎡⎢⎢⎢⎣

t

Et

X(t)

⎤⎥⎥⎥⎦
. Then, the stochastic process Y(t) is defined as

Let y =

⎡⎢⎢⎢⎣

t1

t2

x

⎤⎥⎥⎥⎦
 and G(y) = F(t1, t2, x) which is twice differentiable in x and first differentiable in t1 and t2. 

Based on the computation rules

apply the standard multi-dimensional Itô formula to G(y) to obtain

Although the second derivative of function F(t1, t2, x) with respect to t1 and t2 may not exist, accord-
ing to computation rules Equation (10), the above application of the standard multi-dimensional Itô 
formula for continuous semimartingale process still works. Then,

which is the desired result.  ✷

After establishing the time-changed Gronwall’s inequality and the generalized time-changed Itô 
formula, the first type of time-changed differential system we considered is

F(t, Et ,X(t)) − F(0, 0, x0) = ∫
t

0

Ft1
(t, Es,X(s)) ds + ∫

t

0

Ft2
(s, Es,X(s)) dEs

+ ∫
t

0

Fx(s, Es,X(s))P(s) ds + ∫
t

0

Fx(s, Es,X(s))Φ(s) dEs

+ ∫
t

0

Fx(s, Es,X(s))Ψ(s) dBEs
+
1

2 ∫
t

0

Ψ
T
(s)Fxx(s, Es,X(s))Ψ(s) dEs,

Yt =

⎡⎢⎢⎢⎣

t

Et

x0 + ∫ t
0
P(s) ds + ∫ t

0
Φ(s) dEs + ∫ t

0
Ψ(s) dBEs

⎤⎥⎥⎥⎦
.

(10)dt ⋅ dt = dEt ⋅ dEt = dt ⋅ dEt = dt ⋅ dBEt
= dEt ⋅ dBEt

= 0, dBEt
⋅ dBEt

= dEt ,

dG(Y(t)) = Gy(Y(t)) dY(t) +
1

2
dY(t)TGyy(Y(t)) dY(t)

=

�
Ft1

(t, Et ,X(t)) Ft2
(t, Et ,X(t)) Fx(t, Et ,X(t))

�⎡⎢⎢⎢⎣

dt

dEt

P(t) dt + Φ(t) dEt + Ψ(t) dBEt

⎤⎥⎥⎥⎦
+
1

2
Ψ
T
(t)Fxx(t, Et ,X(t))Ψ(t) dEt

= Ft1
(t, Et ,X(t)) dt + Ft2

(t, Et ,X(t)) dEt + Fx(t, Et ,X(t))P(t) dt + Fx(t, Et ,X(t))Φ(t) dEt

+ Fx(t, Et ,X(t))Ψ(t) dBEt
+
1

2
Ψ
T
(t)Fxx(t, Et ,X(t))Ψ(t) dEt .

F(t, Et ,X(t)) − F(0, 0, x0) = ∫
t

0

{
Ft1

(s, Es,X(s)) + Fx(s, Es,X(s))P(s)
}
ds

+ ∫
t

0

{
Ft2

(s, Es,X(s)) + Fx(s, Es,X(s))Φ(s) +
1

2
Ψ
T
(s)Fxx(s, Es,X(s))Ψ(s)

}
dEs

+ ∫
t

0

Fx(s, Es,X(s))Ψ(s) dBEs
,

(11)

{
dX(t) = AX(t) dE

t
+ f (E

t
,X(t)) dE

t

X(0) = x0,
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where A is a deterministic matrix. The corresponding non-time-changed system is

which plays an important role in applied science and engineering. The time-changed system, 
Equation (11), occurs when the system evolves only during the operation time E

t
.

Theorem 3.1  Let A be an n × n real constant matrix with Re(𝜎(A)) < 0. Suppose f :ℝ
+
×ℝ

d
→ ℝ

d is a 
nonlinear function which satisfies

with the function g:ℝ
+
→ ℝ

d satisfying

Then the trivial solution of the time-changed nonlinear system, Equation (11), is exponentially sam-
ple-path stable and pth moment asymptotically stable.

Proof Let F(t1, t2, x) = exp(t2)x. Apply the time-changed Itô formula, Lemma 3.2, to the time-change 
system, Equation (11), to yield

Since Re(𝜎(A)) < 0, there is a constant K > 0 and 𝜆 > 0 such that, for all t > 0,

Taking the norm on both sides of Equation (15) and applying conditions, Equations (13) and (16), 
yields

This means

Apply the time-changed Gronwall’s inequality, Lemma 3.1, to yield almost surely

which implies almost surely

Combine Lemma 2.3 and condition Equation (14) to yield

Also since Et → ∞ as t → ∞ almost surely, it indicates from Equations (17) and (18) that ‖X(t)‖ → 0 
exponentially in the sense of almost sure convergence. Moreover, from Equation (17),

(12)

{
dY(t) = AY(t) dt + f (t, Y(t)) dt

Y(0) = x0,

(13)‖f (Et ,X(t))‖ ≤ ‖g(Et)‖‖X(t)‖

(14)∫
∞

0

‖g(s)‖ ds < ∞.

(15)X(t) = exp(AEt)x0 + ∫
t

0

exp(A(Et − Es))f (Es,X(s)) dEs.

(16)‖ exp(At)‖ ≤ K exp(−�t).

‖X(t)‖ ≤ K exp(−�Et)‖x0‖ + �
t

0

K exp(−�(Et − Es))‖f (Es,X(s))‖ dEs

≤ K exp(−�Et)‖x0‖ + �
t

0

K exp(−�(Et − Es))‖g(Es)‖‖X(s)‖ dEs.

exp(�Et)‖X(t)‖ ≤ K‖x0‖ + K �
t

0

‖g(Es)‖ exp(�Es)‖X(s)‖ dEs.

exp(�Et)‖X(t)‖ ≤ K‖x0‖ exp
�
K �

t

0

‖g(Es)‖ dEs
�
,

(17)‖X(t)‖ ≤ exp(−�Et)K‖x0‖ exp
�
K �

t

0

‖g(Es)‖ dEs
�
.

(18)�
t

0

‖g(Es)‖ dEs = �
Et

0

‖g(s)‖ ds ≤ �
∞

0

‖g(s)‖ ds < ∞.
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Again from Lemma 2.3 and the fact that Et → ∞ as t → ∞ almost surely,

On the other hand, the inverse �-stable subordinator Et takes Laplace transform

where E
�
(t) is the Mittag-Leffler function defined by E

�
(t) =

∑∞

k=0
tk

Γ(k�+1)
 with Gamma function Γ(t) for 

t ≥ 0. Also E
�
(−�t� ) → 0 as t → ∞, see Mainardi (2013). Then, from Equations (19) and (20),

Therefore, the trivial solution X(t) of the time-changed system Equation (11) is exponentially sample-
path stable and pth moment asymptotically stable.  ✷

Corollary 3.1 Let A be an n × n real constant matrix with Re(𝜎(A)) < 0. Suppose f :ℝ
+
×ℝ

d
→ ℝ

d is 
a nonlinear function. If the trivial solution of the non-time-changed system Equation (12) is expo-
nentially stable, then the trivial solution of the time-changed system Equation (11) is pth moment 
asymptotically stable.

Proof Let Y(t) be the solution of the non-time-changed system Equation (12). By the duality Lemma 
2.5, the process X(t): = Y(Et) is the solution of time-changed system Equation (11). Also since the 
solution, Y(t), of the non-time-changed system Equation (12) is exponentially stable, there exists 
positive constants, K and �, such that

Applying conditional expectation yields

Therefore, the trivial solution of time-changed system Equation (11) is pth moment asymptotically 
stable.  ✷

Remark 3.1 Theorem 3.1 indicates that although the sample path of the trivial solution of the time-
changed nonlinear system Equation (11) is exponentially stable, the pth (p ≥ 1) moment of the trivial 
solution is asymptotically stable. This makes sense because the inverse �-stable subordinator, Et, has 
a distribution with a heavy tail. The long-range dependence (i.e. memory) will slow the decay rate of 
the p-th moment even though every sample path decays exponentially.

Remark 3.2 Actually, under conditions Equations (13) and (14), the trivial solution of the non-time-
changed system Equation (12) is exponentially stable. In this sense, Corollary 3.1 is directly derived 
from Theorem 3.1. However, based on the duality Lemma 2.5, Corollary 3.1 provides a deep connec-
tion on stability between the non-time-changed system Equation (12) and the time-changed system 
Equation (11).

�‖X(t)‖p ≤ �

�
exp

�
−�pEt

�
Kp‖x0‖p exp

�
Kp �

t

0

‖g(Es)‖ dEs
��

.

(19)�‖X(t)‖p ≤ �
�
exp

�
−�pEt

��
Kp‖x0‖p exp

�
Kp �

∞

0

‖g(s)‖ ds
�
.

(20)�
(
exp

(
−�Et

))
= E

�

(
−�t�

)
,

�‖X(t)‖p ≤ E
�

�
−�pt�

�
Kp‖x0‖p exp

�
Kp �

∞

0

‖g(s)‖ ds
�

→ 0.

‖Y(t)‖ ≤ K‖x0‖ exp(−�t).

�‖X(t)‖p = �‖Y(Et)‖p = �
∞

0

�
�‖Y(Et)‖p��Et = �

�
fEt
(�) d� = �

∞

0

‖Y(�)‖pfEt (�) d�

≤ �
∞

0

Kp‖x0‖p exp(−p��)fEt (�) d� = Kp‖x0‖p�(−p�Et) = Kp‖x0‖pE� (−p�t� ).
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The next time-changed system can be considered as a perturbed version of a linear system. 
However, the external force term is affected by the operation time E

t
. So the perturbed time-changed 

system is

Theorem 3.2 Let A be an n × n real constant matrix with Re(𝜎(A)) < 0. Suppose f :ℝ
+
×ℝ

d
→ ℝ

d is a 
nonlinear function which satisfies conditions Equations (13) and (14). Then the trivial solution of the 
time-changed system Equation (21) is sample-path and pth moment exponentially stable.

Proof Let F(t1, x) = exp(−t1A)x. Apply the time-changed Itô Lemma 3.2 to the time-changed system 
Equation (21) to yield

Applying the condition Equation (13) and the fact that Re(𝜎(A)) < 0 yields

From Gronwall’s inequality of Lemma 3.1 and the first change of variable Lemma 2.3,

Similarly, applying the finiteness condition, Equation (14), to Equation (22) yields ‖Xt‖ → 0 exponen-
tially for every sample path as t → ∞. This means the trivial solution of the time-changed system 
Equation (21) is sample-path exponentially stable. Moreover, from Equation (22),

Therefore, �‖X(t)‖p → 0 exponentially which means the trivial solution of the time-changed system 
(21) is also pth moment exponentially stable.  ✷

Remark 3.3 Theorem 3.2 reveals that although the linear system is disturbed by the environment 
which incorporates long-term memory dependent behavior, the trivial solution of the disturbed sys-
tem Equation (21) is both sample-path and pth moment exponentially stable. This stability of the 
system Equation (21) is different from the stability of the system Equation (11). This difference re-
sults from whether or not the dominant part of the linear system is affected by the operation time Et.

Finally, consider the time-changed system which can be considered as a time-changed linear 
system perturbed by long-term memory-dependent noise with the noise being the time-changed 
Brownian motion B

E
t

.

where B
t
 is a standard Brownian motion.

(21)
{

dX
t
= AX

t
dt + f (E

t
,X

t
) dE

t

X(0) = x0.

X(t) = exp(At)x0 + ∫
t

0

exp(A(t − s))f (Es,X(s)) dEs.

‖X(t)‖ ≤ K exp(−�t)‖x0‖ + K �
t

0

exp(−�(t − s))‖g(Es)‖‖Xs‖ dEs.

(22)
‖X(t)‖ ≤ exp(−�t)K‖x0‖ exp

�
K �

t

0

‖g(Es)‖ dEs
�

= exp(−�t)K‖x0‖ exp
�
K �

Et

0

‖g(s)‖ ds
�
.

�‖X(t)‖p ≤ exp(−p�t)Kp‖x0‖p�
�
exp

�
Kp �

Et

0

‖g(s)‖ ds
��

≤ exp(−p�t)Kp‖x0‖p exp
�
Kp �

∞

0

‖g(s)‖ ds
�
.

(23)

{
dX(t) = AX(t) dE

t
+ f (E

t
,X(t)) dB

E
t

X(0) = x0,
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Theorem 3.3  Let A be an n × n real constant matrix with Re(𝜎(A)) < 0. Suppose f :ℝ
+
×ℝ

d
→ ℝ

d is 
a nonlinear function which satisfies condition Equation (13) and a function g:ℝ

+
→ ℝ which satisfies

Then the trivial solution of the time-changed system Equation (21) is square-mean asymptotically 
stable.

Proof Suppose the following non-time-changed stochastic differential system corresponds to the 
time-changed system Equation (23)

Let F(t, y) = exp(At)y. Applying the standard Itô formula to Equation (25) yields

It is known from Magdziarz (2010) and Kuo (2006) that

is a square integrable martingale. So apply the Cauchy inequality and Itô identity to yield

Since Re(𝜎(A)) < 0 and the nonlinear function f satisfies conditions, Equations (13) and (24),

Using the standard Gronwall’s inequality yields

which results in �‖Y‖2 → 0 exponentially from condition Equation (24). Moreover, let X(t): = Y(Et) and 
then X(t) is the solution of the stochastic time-changed system Equation (23) from duality Theorem 
2.5. Then, combining conditional expectation with Equation (25) yields

where K0 = 2K
2 exp

�
2K2 ∫∞

0
‖g(s)‖2 ds

�
. Therefore, the trivial solution of the time-changed system, 

Equation (23), is square-mean asymptotically stable.  ✷

(24)∫
∞

0

‖g(s)‖2 ds < ∞.

(25)

{
dY(t) = A(t) dt + f (t, Y(t)) dBt

Y(0) = x0.

(26)Y(t) = exp(At)x0 + ∫
t

0

exp(A(t − s))f (s, Y(s)) dBs.

∫
t

0

exp(A(t − s))f (s, Y(s)) dBs

�‖Y(t))‖2 ≤ 2�‖ exp(At)x0‖2 + 2�
������

t

0

exp(A(t − s)f (s, Y(s)) dBs

�����

2

≤ 2‖ exp(At)‖2‖x0‖2 + 2�
�
�
t

0

‖ exp(A(t − s))‖2‖f (s, Y(s))‖2 ds
�
.

�‖Y(t)‖2 ≤ 2K2 exp(−2�t)‖x0‖2 + 2K2 �
t

0

exp(−2�(t − s))‖g(s)‖2�‖Y(s)‖2 ds.

(27)
�‖Y(t)‖2 ≤ 2K2 exp(−2�t)‖x0‖2 exp

�
2K2 �

t

0

‖g(s)‖2 ds
�
,

�‖X(t)‖2 = �‖Y(Et)‖2 = �
∞

0

�

�
‖Y(Et)‖2

����Et = �

�
fEt
(�) d�

≤ K0 �
∞

0

exp(−2��)fEt
(�) d� = K0 E(exp(−2�Et)) = K0E� (−2�t

�
),
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