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A robust unbiased dual to product estimator for 
population mean through modified maximum 
likelihood in simple random sampling
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Abstract: In simple random sampling setting, the ratio estimator is more efficient 
than the mean of a simple random sampling without replacement (SRSWOR) if 
𝜌yx >

1

2

Cx

Cy
, provided R > 0, which is usually the case. This shows that if auxiliary  

information is such that 𝜌yx < −
1

2

Cx

Cy
, then we cannot use the ratio method of estima-

tion to improve the sample mean as an estimator of population mean. So there 
is need for another type of estimator which also makes use of information on 
auxiliary variable x. Product method of estimation is an attempt in this direction. 
Product-type estimators are widely used for estimating population mean when the 
correlation between study and auxiliary variables is negatively high. This paper is 
developed to the study of the estimation of the population mean using of unbiased 
dual to product estimator by incorporating robust modified maximum likelihood  
estimators (MMLE’s). Their properties have been obtained theoretically. For the  
support of the theoretical results, simulations studies under several super-popula-
tion models have been made. We study the robustness properties of the modified 
estimators. We show that the utilization of MMLE’s in estimating finite population 
mean results to robust estimates, which is very gainful when we have non-normality 
or common data anomalies such as outliers.
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1. Introduction
The use of additional information supplied by auxiliary variables in sample survey have been consid-
ered mainly in the area of actuarial, medicine, agriculture, and social science at the stage of organi-
zation, designing, collection of units, and developing the estimation procedure. The use of such 
auxiliary information in sample surveys has been studied by Cochran (1940), who used it for estimat-
ing yields of agricultural crops in agricultural sciences. Product method of estimation is a popular 
estimation method in sampling theory. In case of negative correlation between study variable and 
auxiliary variable, Robson (1957) defined a product estimator for the estimation of population mean 
which was revisited by Murthy (1967). The product estimator performs better than the simple mean 
per unit estimator under certain conditions. The use of auxiliary information in sample surveys is 
widely studied in the books written by Yates (1960), Cochran (1977), and Sukhatme, Sukhatme, and 
Asok (1984). Further, Jhajj, Sharma, and Grover (2006), Bouza (2008, 2015), Swain (2013), and Chanu 
and Singh (2014) studied the use of auxiliary information under different sampling designs for im-
proving several estimators.

Let Ȳ
�

=
1

N

∑N

i=1
y
i

�

 and X̄
�

=
1

N

∑N

i=1
x
i

�

 be the population means of the study variable y and the 

auxiliary variable x, respectively, for the population U:(U1,U2,…UN) of size N with coefficient of vari-

ations Cy(=
Sy

Ȳ
) and Cx(=

Sx

X̄
) and correlation coefficient ρyx, where Sy and Sx are the population mean 

squares for the study variable (y) and the auxiliary variable (x) The traditional product estimator for 
population mean Ȳ proposed by Murthy (1964) is given by

 

where ȳ =
1

n

∑n

i=1yi , x̄ =
1

n

∑n

i=1xi and n is the size of the sample.

The bias and the mean square error (MSE) of the estimator ȳp are given by

and

 

where C2y =
s2y
̄Y2
, C2x =
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̄X2

, Cyx =
Syx

ȲX̄
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2

f = n

N
 and Syx is the covariance between the study variable and auxiliary variable.

An unbiased estimator ȳpu of the population mean Ȳ after correcting the bias of ȳp is given by

 

To O(1/n), MSE(ȳ
pu
) ≅ MSE(ȳ

p
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By making transformation, zi =
NX̄−nxi

N−n
(i = 1, 2,… ,N), Bandopadhyay (1980) proposed a dual to 

product estimator, which is given by

 

(1.1)ȳp =
ȳ

X̄
x̄,

(1.2)B(ȳp) =

(

1 − f

n

)

ȲCyx

(1.3)MSE(ȳp) =
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Ȳ2
(
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2
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)

(1.4)ȳpu ≅ ȳp − B(ȳp)

(1.5)
t1 =

ȳ

z̄
X̄,
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where the sample mean of z is z̄ = NX̄−nx̄

N−n
, the population mean of z is Z̄ = X̄, y and x is negatively 

correlated and y is positively correlated with transformed variable z.

Further, V(z̄) =
(

1

n
−

1

N

)

𝛾
2S2x and Cov(ȳ, z̄) = −

(

1

n
−

1

N

)

𝛾S
yx

,

where � =
n

N−n
.

The bias and the MSE of the estimator t1 are given by

 

and

 

where ρyx( < 0) is the correlation between y and x, k =
Cyx

C2x
= �yx

Cy

Cx
.

The estimator t1 is preferred to ȳp when, k > −
1

2
(1 + 𝛾), (1 − 𝛾) > 0, k being negative because 

ρyx < 0.

Further, using this transformation and applying the technique of Hartley and Ross (1954), we have 
an unbiased dual to product estimator (see Singh, 2003) given by

 

where r̄1 =
1

n

∑n

i=1

yi (N−n)

NX̄−nxi
.

The variance of t2 to O(1/n) is given by

where R̄1 =
1

N

∑N

i=1

yi (N−n)

NX̄−nxi

However, in all of these studies mentioned above, the underlying distribution of y is assumed to be 
from a normal population. In this paper, we consider the case where the underlying distribution is 
not normal, which is a more realistic in real-life situations.

Zheng and Al-Saleh (2002) and Islam, Shaibur, and Hossain (2009) have studied the effectivity of 
modified maximum likelihood estimators (MMLE’s) which plays a key role in increasing the efficiency 
of the estimators. Using modified maximum likelihood (MML) methodology (see Tiku, Tan, & 
Balakrishnan, 1986), we propose a new dual to product type estimator that is based on order statis-
tics. We have shown that the proposed estimator has always smaller mean square error (MSE) with 
respect to the corresponding unbiased dual to product estimator (1.8), unless the underlying distri-
bution is normal. When the underlying distribution is normal, both the estimators provide exactly 
the same mean square error. We support the theoretical result with simulations under several su-
per-population models and study the robustness property of the modified dual to product estimator. 
We show that utilization of MMLE for estimating finite populations mean results to robust estimate, 
which is very gainful when we have non-normality or other common data anomalies such as 
outliers.

2. Long-tailed symmetric family
For the super-population linear regression model, y

i
= �x

i
+ e

i
; i = 1, 2,… ,n, let the underlying 

distribution of the study variable y follow the long-tailed symmetric family.

(1.6)B(t1) =

(

1 − f

n

)

𝛾(k + 1)ȲC2x

(1.7)MSE(t1) =

(
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Ȳ2
(
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)

(1.8)t2 = r̄1Z̄ +
n(N − 1)

N(n − 1)
(ȳ − r̄1z̄),

(1.9)V(t2) = E(ȳ − Ȳ)
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Page 4 of 12

Kumar & Chhaparwal, Cogent Mathematics (2016), 3: 1168070
http://dx.doi.org/10.1080/23311835.2016.1168070

 

where K = 2p−3, p ≥ 2 is the shape parameter (p is known) with E(y) = � and Var(y) = �
2. Here, it can 

be obtained that the kurtosis of (2.1) is �4
�
2
2

= 3K∕(K − 2).

The coefficients of kurtosis of the LTS family that we consider in this family are ∞, 6, 4.5, 4.0 for  
p = 2.5, 3.5, 4.5, 5.5, respectively.

We realize that when p = ∞ (2.1) reduces to a normal distribution. The likelihood function obtained 
from (2.1) is given by

 

The MLE of μ (assuming σ is known) is the solution of the likelihood equation

 

which does not have explicit solutions.

Vaughan (1992a) showed that Equation (2.2) is known to have multiple roots for all p < ∞ but 
unknown and the number of roots increases as n increases.

The robust MMLE which is known to be asymptotically equivalent to the MLE are obtained in fol-
lowing three steps:

(1)  The likelihood equations are expressed in terms of the ordered variates:

(2)  The function g(zi) are linearized using the first two terms of a Taylor series expansion around 
t
(i) = E

(

z(i)

)

, z(i) =
y
(i)−�

�
;1 ≤ i ≤ n,

(3)  The resulting equations are solved for the parameters which gives a unique solution (MMLE).

The values of t(i); 1 ≤ i ≤ n are given in Tiku and Kumra (1981) for p = 2 (0.5)10 and Vaughan (1992b) 
for p = 1.5 when n ≤ 20. For n > 20, the approximate values of t(i) can be used which are obtained from 
the equations

 

We note that t =
√

v

k
z follows a Student’s T-distribution with degrees of freedom v = 2p−1.

We have now

A Taylor series expansion of g
(

z
(i)

)

 around t(i) with first two terms of expansion gives

(2.1)
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K
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�
.
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= 0, g(zi) = zi∕

{

1 +
1

K
(z2i )

}

,

y
(1) ≤ y(2) ≤ ⋯ ≤ y

(n),

(2.4)
Γp

�
√

KΓ
�

1

2

�

Γ
�

p − 1

2

�

t
(i)

�
−∞

{1 +
1

K
z2}−pdz =

i

n + 1
; 1 ≤ i ≤ n.

(2.5)
dLogL

d�
=
2p

K�

n
∑

i=1

g
(

z
(i)

)

= 0, since

n
∑

i=1

yi =

n
∑

i=1

y
(i)



Page 5 of 12

Kumar & Chhaparwal, Cogent Mathematics (2016), 3: 1168070
http://dx.doi.org/10.1080/23311835.2016.1168070

 

where �i =
(

2

K

)

t3
(i)

{1+(1∕K)t2
(i)}

2 and  

Further, for symmetric distributions, it may be noted that t(i) = −t(n−i+1) and hence

Now, using (2.6) and (2.7) in (2.5), we have the modified likelihood equation which is given by

 

Hence, the solution of (2.9) is the MMLE �̂� is given by

 

where m =
n
∑

i=1

�i

Tiku and Vellaisamy (1996) showed that

 

and

 

The exact variance of �̂� is given by V (�̂�) = (� �Ω�)𝜎2∕m2, where � � = (�1, �2, �3,… ., �n) and Ω is the 
variance–covariance matrix of the standard variates z(i) =

y
(i)
−�

�
; 1 ≤ i ≤ n. The term Cov(�̂�, ȳ) in 

(2.12) can be evaluated as

Cov(�̂�, ȳ) = (� �Ω�)𝜎2∕m, where �′ is the 1 × n row vector with elements 1/n. The elements of Ω 
are tabulated in Tiku and Kumra (1981) and Vaughan (1992b).

When σ is not known, the MMLE �̂� can be obtained as given by Tiku and Suresh (1992) and Tiku and 
Vellaisamy (1996), i.e.

 

where F =
2p

K

∑n

i=1 �iy(i) and C =
2p

K

∑n

i=1 𝛽i(y(i) − �̂�)2

The methodology of MML is employed in those situations where maximum likelihood (ML) estima-
tion is intractable as widely used by Puthenpura and Sinha (1986), Tiku and Suresh (1992), and Oral 
(2006). Under some regularity conditions, MMLEs have exactly the same asymptotic properties as ML 
estimators (MLEs) as discussed in Vaughan and Tiku (2000), and for small n values they are known 
to be essentially as efficient as MLEs.

(2.6)g
(

z
(i)

)

≅ g
(

t(i)

)

+
{

z(i) − t(i)

}

{

d{g(z)}

dz
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2
.
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dLogL
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m

(2.11)E(�̂� − Y) = 0

(2.12)E(�̂� − Y)2 = V(�̂�) −
2n

N
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𝜎
2

N
.

(2.13)
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F +
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F2 + 4nC

2
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3. The proposed dual to product estimator and its variance
In the context of sampling theory, Tiku and Bhasln (1982) and Tiku and Vellaisamy (1996) used the 
MMLE (2.10) and showed that utilizing the MMLEs leads to improvements in efficiencies in estimating 
the finite population mean.

Motivated from such approach, we propose a new unbiased dual to product estimator which is 
given by

 

assuming the population mean of the auxiliary variable X is known.

The expression for the variance of the proposed estimator T1, up to the terms of order n−1 is given 
as follows:

Let �̂� = Y(1+ ∈0), z̄ = Z(1+ ∈1) such that E(∈0) = 0 = E(∈1)

Using simple random sampling without replacement method of sampling, we have,

Now, we have

where Cov(�̂�, x̄) =
(

1

𝜃

)

{

Cov(�̂�, ȳ − ē)
}

= (1∕𝜃)
{

Cov(�̂�, ȳ) − Cov(𝜃x̄
[⋅]
+ ē

[⋅]
, ē)

}

x̄
[⋅]
=
∑n

i=1 𝛽i x̄[⋅]∕m, ē[⋅] =
∑n

i=1 𝛽i ē[⋅]∕m, ē[⋅] = y(i) − 𝜃x
[i]. and x[i] is the concomitant of y(i),. i.e. x[i] 

is that observation xi which is coupled with y(i), when (yi, xi) are ordered with respect to yi; i ≤ i ≤ n. 
Here, we realize that x is assumed to be non-stochastic in nature in the super-population linear re-
gression model y = θx + e, Cov

(

xi , ej

)

 is not affected by the ordering of the y values for 1 ≤ i ≤ n and 
1 ≤ j ≤ n; hence

where Cov(ē
[⋅]
, ē) = (� �Ω�)

𝜎
2
e

m
,

Note that if the sampling fraction n/N exceeds 5%, the finite population correction (N - n)/N can be 
introduced as

(3.1)T1 = r̄1Z +
n(N − 1)

N(n − 1)

(

�̂� − r̄1Z
)

E(∈20) =
1

Y
2
E(�̂� − Y)2 =

1

Y
2

{

V(�̂�) −
2n

N
Cov(�̂�, ȳ) +

𝜎
2

N

}

,

E
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Z
2
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Z

�
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X
2
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N−n
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V
�

x
�

=
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X
2
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N−n
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−

1
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�

S
2

x

=
1

X
2

�
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N−n

�2�

1

n
−

1

N

�

1

N−1

∑N

i=1

�

x
i
− X

�2

=
1

X
2

n

(N−n)N(N−1)

∑N

i=1

�

x
i
− X

�2

E(∈0,∈1) =
1

YX
Cov(�̂�, Z) = −

1

Y ,X
𝛾Cov(�̂�, x̄)

B
(

T1
)

= 0,

(3.2)V(T1) = E(�̂� − Y)2 + R̄21𝛾
2V(x̄) + 2R̄1𝛾Cov(�̂�, x̄)

Cov(�̂�, x̄) = (1∕𝜃)
{

Cov(�̂�, ȳ) − Cov(ē
[⋅]
, ē)

}

,

Cov(�̂�, x̄) = {(N − n)∕N𝜃}
{

Cov(�̂�, ȳ)} − Cov(ē
[⋅]
, ē)

}
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4. Monte Carlo simulation study
In this study for the simulation, we have used R-programming software. In the super-population 
models generated, we use the model
 

where we generate ei and xi independently and calculate yi for i  =  1,  2,  …,  N. Let the errors 
e1, e2,… , eN be the random observations from a super-population from (2.1) with E(e) = 0 and 
V(e) = �

2
e. Let UNdenotes the corresponding finite population consists of N pairs (x1, y1), (x2, y2), …., 

(xN, yN). To calculate the MSE of the proposed estimator in (3.1), we calculate T1 for all possible simple 

random samples 
(

N

n

)

 of size n ( = 5, 11, 15) from UN. Since 
(

N

n

)

 is extremely large, so we con-

duct all Monte Carlo studies as follows.

We take N = 500 in each simulation and generate U500 pairs from an assumed super-population. 
From the generated finite population U500, we have selected a sample of size n(= 5, 11, 15) by sim-
ple random sampling without replacement. Now, we choose at random S = 10,000 samples for all 

the possible 
(

500

n

)

 samples of size n ( = 5, 11, 15), which gives 10,000 values of T1. To compare 

the efficiency of the proposed estimator under different models for a given n, we calculate the val-
ues of mean square errors as follows:

MSE(T1) =
1

s

∑s

j=1(T1j − Y)
2, MSE(t1) =

1

s

∑s

j=1(t1j − Y)
2, MSE(ȳpu) =

1

s

∑s

j=1(ȳpj − Y)
2 and 

MSE(t2) =
1

s

∑s

j=1(t2j − Y)
2.

For setting the population correlation ρyx sufficiently high, we choose the value of parameter θ in 
the model y = θx + e, such that the correlation coefficient between study variable (y) and auxiliary 
variable (x) is ρyx. To determine the value of θ that satisfies this condition, we follow a similar way 
given by Rao and Beegle (1967) and write the population correlation between the study variable(y) 
and the auxiliary variable (x). For example if X ~ U (0,1), the value of θ for which the population cor-

relation between y and x becomes �2 =
12�2�2yx

1−�2yx
 for the LTS family. Similarly, if x is generated from Exp 

(1), the value of θ for the population correlation becomes �2 =
�
2
�
2
yx

1−�2yx
 for the symmetric family. In the 

same way, we can have x ∼ exp
(

0.5
)

, x ∼ N
(

0, 1
)

, x ∼ U(−1, 2.5) etc. and the corresponding val-
ues of θ can be calculated accordingly. Here, we take σ2 = 1, in all situations without loss of generality 
and calculate the required parameter θ for which ρyx = −0.45.

5. Comparison of efficiencies of the proposed estimator
The conditions under which the proposed estimator T1 is more efficient than the corresponding esti-
mators ȳpu, t1 and t2 are given as follows:

MSE(T1) ≤ MSE(t2) if

 

(4.1)yi = �xi + ei , i = 1, 2,… ,N,

(5.1)Cov(ȳ, x̄) ≥
1

2R̄1𝛾
{E(�̂� − Y)2 − E(ȳ − Y)2} + Cov(�̂�, x̄),

MSE(T1) ≤ MSE(t1)if

(5.2)Cov(ȳ, x̄) ≥
1

2R𝛾
{E(�̂� − Y)2 − E(ȳ − Y)2} +

𝛾

2R
V(x̄){R̄21 − R

2} +
R̄1
R
Cov(�̂�, x̄)

MSE(T1) ≤ MSE(ȳpu)if
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MSE(T1) ≤ MSE(t2) ≤ MSE(ȳpu) if

 

and

MSE(T1) ≤ MSE(t2) ≤ MSE(t1) ≤ MSE(ȳpu) if

 

where Cov(ȳ, x̄) =
(

1

n
−

1

N

)

S
yx
.

We assume two different super-population models given below to see how much efficiency we 
gain with the proposed modified estimator, when the conditions given in Section 5 are satisfied un-
der non-normality:

(1)  x ~ U (−1, 2.5) and e ∼ LTS(p, 1).

(2)  x ∼ exp (1) and e ∼ LTS(p, 1).

For the models (1) and (2), the values θ which makes the population correlation ρyx = −0.45 are 
given in Table 1.

Here, we note that for the LTS family (2.1), the value of θ does not depend on the shape parameter p.

To verify that the super-populations are generated appropriately, we provide a scatter graph and 
the underlying distribution of model for p = 3.5 for model (2) in Figures 1 and  2.

Relative efficiencies are calculated by RE =
MSE(ȳpu)

MSE(⋅)
∗ 100,

where MSE (.) and relative efficiency (RE) are given in Table 2 for the model (1) and (2).

(5.3)Cov(ȳ, x̄) ≥
1

2R
{E(�̂� − Y)2 − E(ȳ − Y)2} +

1

2R
V(x̄){R̄21𝛾

2 − R2} +
R̄1𝛾

2

R
Cov(�̂�, x̄),

MSE(T1) ≤ MSE(t2) ≥ MSE(t1)if

(5.4)

1

2R̄1𝛾
{E

(

�̂� − Y
)2

− E
(

Y − Y
)2

} + Cov(�̂�, x̄) ≤ Cov(ȳ, x̄) ≤
𝛾

2R̄1
V(x̄){R2 − R̄21} +

R

R̄1
Cov(ȳ, x̄)

(5.5)

1

2R̄1𝛾
{E

(

�̂� − Y
)2

− E
(

ȳ − Y
)2

} + Cov(�̂�, x̄) ≤ Cov(ȳ, x̄) ≤
1

2R̄1𝛾
V(x̄)

{

R2 − R̄21𝛾
2
}

+
R

R̄1𝛾
Cov(ȳ, x̄),

(5.6)

1

2R̄
1
𝛾
{E

(

�̂� − Y
)2

− E
(

ȳ − Y
)2

} + Cov(�̂�, x̄) ≤ Cov(ȳ, x̄) ≤
𝛾

2R̄
1

V(x̄)
{

R
2 − R̄2

1

}

+
R

R̄
1

Cov(ȳ, x̄)

≤
1

2R̄
1
𝛾
V(x̄){R2 − R̄2

1
𝛾
2} +

R

R̄
1
𝛾
Cov(ȳ, x̄),

Table 1. Parameter values of θ used in models (1)–(2) that give ρyx = −0.45
Population p

2.5 4.5 5.5
Model (1) −1.746 −1.746 −1.746

Model (2) −0.504 −0.504 −0.504
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From Table 2, we see that the proposed estimator T1 is more efficient than the corresponding es-
timators ȳpu, t1 and t2 because the theoretical conditions given in Section 5 are satisfied. We also 
observe that when sample size increases, mean square error decreases.

6. Robustness of the proposed estimator
The outliers in sample data are normally a focused problem for survey statistician. In practice, the 
shape parameters p in LTS(p, σ) might be mis-specified. Therefore, it is very important for estimators 
to have efficiencies of robustness estimates such as an estimator is full efficient or nearly so for an 
assumed model and maintains high efficiencies for plausible to the assumed model.

Here, we take N = 500 and σ2 = 1 without loss of generality and we study the robustness property 
of proposed estimator under different outlier models as follows.

We assume x ~ U (−1, 2.5) as well as x ∼ Exp (1) and y ∼ LTS(p = 3.5, σ2 = 1). We determine our 
super-population model as follow:

Figure 2. Underlying 
distribution of the study 
variable obtained from model 
(2) for p = 3.5.

y

Fr
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y
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Figure 1. A scatter graph of the 
study variable and auxiliary 
variable obtained from model 
(2) for p = 3.5.
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(5)  True model: LTS(p = 3.5, σ2 = 1)

(6)  Dixon’s outliers model: N−No observations from LTS (3.5, 1)and No (we do not know which) form 
LTS (3.5, 2.0)

(7)  Mis-specified model: LTS (4.0, 1)

Here, we realize that the model (5), the assumed super-population model is given for the purpose 
of comparison and the models (6) and (7) are taken as its plausible alternatives. Here, we have as-
sumed the super-population model LTS (3.5, 1). The coefficients (αi, βi) from (2.7) are calculated with 
p  =  3.5 and are used in models (5) and (6). No in the model (6) is calculated from the formula 
(

|

|

0.5 + 0.1 ∗ N|
|

= 50
)

 for N = 500. We standardized the generated e
�

i s, (i = 1, 2,… ,N) in all the 
models to have the same variance as that of LTS (3.5, 1) i.e. it should be equal to 1. The simulated 
values of MSE and the relative efficiency are given in Table 3. Here, theoretical conditions are satis-
fied for the models.

From the Table 3, we see that the proposed estimator T1 is more efficient than the corresponding 
estimators ȳpu, t1 and t2 because the theoretical conditions are satisfied. We also observe that when 
sample size increases, mean square error decreases.

7. Determination of the shape parameter
It may be possible that the shape parameter p is unknown, then in such a case in order to determine 
whether a particular density is appropriate for the underlying distribution of the study variable y, a 
Q–Q plot is made by plotting the population quantiles for the density against the ordered values of y.

Table 2. Mean square error and efficiencies of the estimators under super-populations (1–2)

Note: Mean square errors are in the parenthesis.

Est. x ~ U(0,1) and e ~ LTS (p,1) x ~ exp(1) and e ~ LTS (p,1)
n n

5 11 15 5 11 15
p = 2.5 T1 229.74 

(0.2333)
215.50 

(0.0961)
195.85 

(0.0747)
214.54 

(0.2152)
202.80 

(0.0963)
213.27 

(0.0678)

t2 197.20 
(0.2718)

187.08 
(0.1107)

163.46 
(0.0225)

191.34 
(0.2413)

171.91 
(0.1136)

170.12 
(0.0850)

t1 197.13 
(0.2719)

186.91 
(0.1108)

163.28 
(0.0896)

191.18 
(0.2415)

171.62 
(0.1138)

169.62 
(0.0851)

ȳ
pu

100.00 
(0.536)

100.00 
(0.2071)

100.00 
(0.1463)

100.00 
(0.4617)

100.00 
(0.1953)

100.00 
(0.1446)

p = 4.5 T1 226.97 
(0.2403)

177.83 
(0.1087)

180.72 
(0.0773)

179.04 
(0.2447)

168.95 
(0.1124)

172.99 
(0.0822)

t2 224.35 
(0.2431)

174.14 
(0.1110)

178.42 
(0.0783)

172.28 
(0.2543)

161.21 
(0.1178)

164.58 
(0.0864)

t1 224.26 
(0.2432)

173.99 
(0.1111)

178.19 
(0.0784)

172.01 
(0.2547)

160.93 
(0.1180)

164.39 
(0.0865)

ȳ
pu

100.00 
(0.5484)

100.00 
(0.1933)

100.00 
(0.1397)

100.00 
(0.4381))

100.00 
(0.1899)

100.00 
(0.1422)

p = 5.5 T1 209.83 
(0.2513)

180.92 
(0.1174)

191.68 
(0.0793)

192.57 
(0.2490)

176.75 
(0.1161)

158.31 
(0.0842)

t2 208.25 
(0.2532)

178.64 
(0.1189)

190.00 
(0.0800)

188.71 
(0.2541)

171.29 
(0.1198)

152.87 
(0.0872)

t1 208.17 
(0.2533)

178.49 
(0.1190)

189.76 
(0.0801)

188.48 
(0.2544)

171.00 
(0.1200)

152.69 
(0.0873)

ȳ
pu

100.00 
(0.5273)

100.00 
(0.2124)

100.00 
(0.1520)

100.00 
(0.4795)

100.00 
(0.2052)

100.00 
(0.1333)
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The population quantiles t(i) are determined from the equation
t
(i)

�
−∞

t(u)du =
i

n+1
; 1 ≤ i ≤ n, where n is the sample size.

The Q–Q plot that closely approximates a straight line would be assumed to be the most appropri-
ate. Using such procedure, we can also obtain a plausible value for the shape parameter simply.

8. Conclusions
In this study, we show that when the underlying distribution of the study variable is not normal (e.g. 
Pareto distribution etc.), which is applicable in most of areas, MML integrated estimators can im-
prove the efficiency of the estimators. In the paper, we show when the underlying distribution of the 
study variable is a long-tailed symmetric distribution, MML integrated dual to product estimator (T1) 
can improve the efficiency of the unbiased dual to product estimator t2. The proposed estimator is 
also more efficient than the product estimators ȳpu and t1. We also show that the MML integrated 
dual to product estimator (T1) is robust to outliers as well as other data anomalies.

Table 3. Mean square errors and efficiencies under super-populations (5)–(7) for LTS family

Note: Mean square errors are in the parenthesis.

Est. n n
5 11 15 5 11 15

True Model (5): x ~ Uni (0, 1) Dixon outlier Model (6): x ~ Uni (0, 1)

T1 220.58 
(0.2473)

200.19 
(0.1037)

191.73 
(0.0810)

275.37 
(0.9490)

233.97 
(0.3441)

194.52 
(0.2374)

t2 213.25 
(0.2558)

188.04 
(0.1104)

177.48 
(0.0875)

248.53 
(1.0515)

210.15 
(0.3831)

182.39 
(0.2532)

t1 213.17 
(0.2559)

187.87 
(0.1105)

177.28 
(0.0876)

248.25 
(1.0527)

209.93 
(0.3835)

182.24 
(0.2534)

ȳ
pu

100.00 
(0.5455)

100.00 
(0.2076)

100.00 
(0.1553)

100.00 
(2.6133))

100.00 
(0.8051))

100.00 
(0.4618)

Mis - specified Model (7): x ~ Uni (0, 1) True Model (5): x ~ Exp (1)

T1 231.94 
(0.2683)

183.21 
(0.1102)

185.40 
(0.0822)

207.97 
(0.2308)

184.50 
(0.1026)

174.59 
(0.0724)

t2 226.62 
(0.2746)

179.15 
(0.1127) 

180.57 
(0.0844)

201.34 
(0.2384)

167.97 
(0.1127)

159.80 
(0.0791)

t1 226.62 
(0.2747)

178.99 
(0.1128)

180.36 
(0.0845)

201.01 
(0.2388)

167.82 
(0.1128)

159.60 
(0.0792)

ȳ
pu

100.00 
(0.6223)

100.00 
(0.2019)

100.00 
(0.1524)

100.00 
(0.4800)

100.00 
(0.1893)

100.00 
(0.1264)

Dixon outlier Model (6): x ~ Exp (1) Mis - specified Model (7): x ~ Exp (1)

T1 246.62 
(0.3029)

198.58 
(0.1354)

211.18 
(0.0966)

188.42 
(0.2349)

174.13 
(0.1090)

174.04 
(0.0782)

t2 243.64 
(0.3066)

188.68 
(0.1404)

197.87 
(0.1031)

183.19 
(0.2416)

163.90 
(0.1158)

169.28 
(0.0804)

t1 242.77 
(0.3077)

188.14 
(0.1408)

197.30 
(0.1034)

182.82 
(0.2421)

163.76 
(0.1159)

169.07 
(0.0805)

ȳ
pu

100.00 
(0.7470)

100.00 
(0.2649)

100.00 
(0.2040)

100.00 
(0.4426)

100.00 
(0.1898)

100.00 
(0.1361)
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