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Super edge-magic sequence of maximal outer 
planer graph and its characteristics
G.S.G.N. Anjaneyulu1 and A. Vijayabarathi2*

Abstract: In this paper, we study specific striped maximal outer planar graph (MOP) 
in the view of super edge-magic sequences (SEMS). Also, we derive a formula for the 
Wiener index (WI) of above MOP graph which is having SEMS. We analyze graphical 
properties like independence number, chromatic number, dominance number, and 
matching number of specific striped MOP graph through SEMS.
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1. Introduction
We have considered all the graphs which are simple and finite. Kotzig and Rosa (1970) introduced 
the concepts of magic valuation. Ringle and Laldo called this type of valuation as edge-magic labe-
ling (Ringel & Llado, 1996; Wallis, Baskoro, Miller, & Slamin, 2000). The concept of super edge-magic 
was introduced by Enomoto, Llado, Nakamigawa, and Ringel (1998) and Chen (2001).
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A (p, q) graph G is called edge-magic if there exists a bijective function f: V(G)UE(G) → {1, 2, 3, … , 
p + q} such that f(u) + f(v) + f(uv) = k is a magic constant for any edge uv ∊ E(G). Moreover, G is said to 
be super edge-magic if f (V(G)) → {1, 2, 3, … , p}.

The concept of super edge-magic sequence was introduced in Vijayabarathi and Anjaneyulu 
(2013a). More about the super edge-magic graphs like fabrication of new super edge-magic  
sequences (SEMS) and their properties can be found in the same paper (Vijayabarathi & Anjaneyulu, 
2013a). As an application of SEMG and SEMS, the study on the Wiener index (WI) of the molecular 
graph to analyze the structure of organic molecules like Cyclo alkane, Alkane-n-amine, and Alkane-n, 
n′-domain through this SEMS has been presented in Vijayabarathi and Anjaneyulu (2013b). We are 
giving the basic definition of SEMS, which was published in Vijayabarathi and Anjaneyulu (2013a) for 
smooth understanding and convenience of the readers as follows:

“Let G be a super edge-magic graph with p vertices and q edges. Here, we introduce a new term, 
i.e. a constant of super edge-magic sequence and is denoted by α*. A sequence < xi > is said to be 
super edge-magic sequence if

where xi is always the lower end vertex of the edge label p + i, 1 ≤ i ≤ q i.e. xi = min{f(x), f(y)/xy ∊ E(G)} 
and α* = min(S), where S = {f(x) + f(y)/xy ∊ E(G)}”. More details can be seen with fine illustrations in our 
paper (Vijayabarathi & Anjaneyulu, 2013a).

2. Maximal outer planar graph
A planar graph which can be drawn without edge crossing. A graph is outer planar if there exists a 
planar embedding of G in which all the vertices lie on the unbounded face. The edges on the bound-
ary of an outer planar graph are called outer edges and the other edges are called inner edges or 
chords.

An outer planar graph is said to be maximal if it has the maximum possible number of edges for 
the given number of vertices. A maximal outer planar graph (MOP) can be viewed as a triangulation 
of a convex polygon. Figure 1(a–d) presents the difference between planar, outer planar, maximal 
outer planar, and planar but not outer planar.

Let f be an inner face of a MOP G. If f is adjacent to the outer face, then we say that f is a marginal 
triangle. Otherwise we say that f is an internal triangle. A maximal outer plane graph G without inter-
nal triangle is called striped. It is well known that every maximal outer planar is 2-connected. Moreover, 
each maximal outer planar has a unique Hamiltonian cycle, which is the boundary of the exterior re-
gion while every interior region is a triangle. Because each interior region of G is a triangle, it follows 
that the two vertices incident to chord of G have exactly two common neighbors, while two vertices 
incident to an outer edge of G have exactly one common neighbor. The number of edges and regions 
in a maximal outer planar can be determined from the order of the maximal outer planar. We present 
some significant results in MOP. More results can be seen in Campos and Wakabayashi (2013).

max
1≤i≤q

{
2xi + i

}
< 𝛼 ∗ +q ≤ p +min

1≤i≤q

{
xi + i

}

Figure 1. Difference between 
planar, outer planar, and 
maximal outer planar.

(b) Outer (c) Maximal 
Outer 

(a) Planar (d) Planar but not 
Outer planar
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 Lemma 2.1 Let G be a MOP with n vertices n ≥ 3. Then we have the following (i) there are 2n − 3 edges, 
of which there are n − 3 chords (ii) there are n − 2 inner faces and each inner face is a triangle (iii) there 
are at least two vertices with degree 2.

 Proposition 2.1 If G is a MOP, then there is an embedding of G in the plane such that the boundary 
of the outer face is a Hamiltonian cycle and each inner face is a triangle.

Proposition 2.2 Let G be a MOP of order n ≥ 4. If G has k internal triangles, then G has k + 2 vertices 
of degree 2.

3. Motivation and proposed work
Lee, Kitagaki, Young, and Kocay (2006), proved Edge graceful and Edge-magic graphs are MOP. In 
this paper, we would like to study and analyze specific striped MOP in the direction of SEMS. Then we 
investigate “independence number, chromatic number, dominance number and matching number 
for Specific Striped MOP through SEMS”.

4. Striped MOP

4.1. Algorithm for super edge-magic labeling

Step 1: Let G be a striped MOP of order n ≥ 4.

Let V = (x1, x2, … , xn) be the vertex set of G.

Step 2: The vertices x1, x2, … , xn lie on the boundary of its outer face.

Step 3: From Proposition 2.2, we know that G has exactly two vertices of degree 2. Without loss of 
generality, we may assume that x1 and xn are the two vertices of degree 2 in G.

Step 4: The removal of the vertices x1 and xn breaks the cycle into two paths:

P1 = (x2, x4, …) and P2 = (x3, x5, …).

Step 5: The paths P1 and P2 are joined by an edge from xi to xi + 1, for i = 2, 3, … , n − 2 which can be 
depicted in Figure 2. Also we call this type of labeling assignment as a consecutive vertex labeling.

Step 6: Now G is always super edge-magic.

Step 7: As we discussed in Kotzig and Rosa (1970), SEMG has SEMS and is of the form (n − 1, n − 2, 
n − 2, n − 3, n − 3, … , 2, 2, 1, 1) where n is the number of vertices of G.

For illustration, if n = 6, SEMS: (5, 4, 4, 3, 3, 2, 2, 1, 1) (Figure 3).

Figure 2. Construction of 
consecutive vertex labeling. x1

xn

x2

x4

x3

x3

x1
x2x3

x4
x5

x6
x7

xn



Page 4 of 11

Anjaneyulu & Vijayabarathi, Cogent Mathematics (2015), 2: 1123340
http://dx.doi.org/10.1080/23311835.2015.1123340

Remark 4.1.1 The above consecutive vertex labeling is super edge-magic. Then by SEM labeling 
property sum of edge label is: S = {f(x) + f(y)/ for each xy ∊ E(G)}, where f(x) denotes label of the vertex 
x and vice versa which contains q(=2n − 3) consecutive integers. Each integer value is a sign of an 
edge of a graph. Therefore:

Since the edge sum of the chords are always odd, because of the consecutive vertex labeling. 
According to the odd sum, the order of the chord is:
Sum 3 = (x1, x2) fixed on the boundary.
Sum 5 = (x1, x4)/(x2, x3)
Sum 7 = (x1, x6)/(x2, x5)/(x3, x4)     Chord
………                                                       ]
………
Sum 2n − 1 = (x1, x2n − 2)/(x2, x2n − 3)/ … /(xn − 1, xn) fixed on the boundary.

The above sum provides the total number of possibilities, according to that we can choose a chord 
for a given graph of n vertices. The graph will vary only the choice of the chord. In this procedure, we 
attain all super edge-magic graphs but not all maximal outer planar. Some of them may be non-
planar also. Now the total number super edge-magic graphs can be computed by the following 
theorem.

Theorem 4.1.1 Let G be a graph with n vertices and 2n − 3 edges. Then the number of super edge-
magic graphs is equal to: ⎧⎪⎨⎪⎩

�
n

2

�
!

�
n

2
− 1

�
! when n is even

��
n−1

2

�
!

�2
when n is odd

Proof The theorem is proved by mathematical induction on the order of graph. According to the 
Remark 4.1.1, the total number of possible super edge-magic graphs are:

for n = 4

sum 3 = (x1, x2) fixed on the boundary.

sum 5 = (x1, x4)/(x2, x3) Chord

sum 7 = (x3, x4) fixed on the boundary

Therefore, total SEMG = 1 × 2 × 1 = 2! × 1! = 2.

for n = 5:

Sum 3 = (x1, x2) fixed on the boundary.

Sum 5 = (x1, x4)/(x2, x3)

Sum 7 = (x1, x6)/(x2, x5)/(x3, x4)

q = n + (n − 3)

q = edges on Hamiltonian circuit (boundary) + Chords

Figure 3. SEMG for MOP–SEMS. 1 2

3 4

5 6
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Sum 9 = (x1, x8)/(x2, x7)/(x3, x6)/(x4, x5)

Total SEMG = 1 × 2 × 2 × 1 = (2!)2 = 4.

and for n = 6:

sum 3 = (x1, x2) fixed on the boundary.

sum 5 = (x1, x4)/(x2, x3)

sum 7 = (x1, x6)/(x2, x5)/(x3, x4)    ]chords

sum 9 = (x1, x8)/(x2, x7)/(x3, x6)/(x4, x5)

sum 11 = (x1, x10)/(x2, x9)/(x3, x8)/(x4, x7)/(x5, x6) fixed on the boundary.

Total SEMG = 1 × 2 × 3 × 2 × 1 = 3! × 2! = 12.

Similarly, For n = 7: 1 × 2 × 3 × 3 × 2 × 1 = (3!)2 = 36.

For n = 8: 1 × 2 × 3 × 4 × 3 × 2 × 1 = 4! × 3! = 144.

Now the theorem is true for the case, when n = 4, 5, 6, 7, 8.

Assume that the theorem holds true for all the graphs with fewer vertices, i.e. n = m vertices. To prove 
the theorem is true for n = m + 2, we have the cases either m is even or odd.

For the case, when n = m is even, we know that,

Now for n = m + 2 and it is also even:

This proves the result for the case, when n is even.

For the case, when n = m is odd, we know that,

Now for n = m + 2 and it is also odd:

This also proves the result for the case, when n is odd. Hence, the theorem is true for all values of n 
by mathematical induction.  □

4.2. Significant observations

•  In the above theorem, all the graphs are not maximal outer planar. Some of them are non-pla-
nar. From this we conclude that

1 × 2 × 3 ×… ×

(
m

2

)
×

(
m

2
− 1

)
×

(
m

2
− 2

)
…× 2 × 1 =

(
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2

)
! ×
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2
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)
!
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(
m + 2

2

)
×

(
m + 2

2
− 1

)
×

(
m

2
− 1

)
×

(
m

2
− 2

)
…× 2 × 1

=
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We can verify this equation by the following for n = 5, n = 6 and in other cases also (Figures 4 and 5).

•  The planar graphs which were depicted in Theorem 4.1.1 are always maximal outer planar with-
out internal triangles. These are also called simply striped graphs.

•  A MOP without internal triangles is super edge-magic, but the converse need not be true.

•  All MOPs with four vertices are super edge-magic.

5. Properties of specific striped MOP

Definition 5.1 Consecutive Striped MOP

Let G be a super edge-magic MOP which has consecutive vertex labeling. Then super edge-magic se-
quence this for specific striped MOP is: (n − 1, n − 2, n − 2, n − 3, n − 3, … , 2, 2, 1, 1), where n is the 
number of vertices of G with α* = 3. We call this type of graph as consecutive striped MOP.
Calculation of Wiener Index

Let G be specific striped super edge-magic MOP with n vertices. Calculation of WI for the above 
MOP graph is pursued by the method described in the paper (Vijayabarathi & Anjaneyulu, 2013b). We 
formulate this in the following theorem. More about WI discussed in the papers Mohar and Pisanski, 
1988, Wiener 1947a), Mihalić et al. 1992 and Wiener, 1947b).

Theorem 5.1 The WI of the consecutive striped MOP W(Gn), n be the number of vertices is, given by

Number of MOP graphs = Total SEM graphs − Non planar graphs.

W(Gn) =

⎧
⎪⎨⎪⎩

W
�
Gn−1

�
+

�
n

2

�2
if n is even

W
�
Gn−1

�
+

�
n2−1

4

�
if n is odd

Figure 4. Total SEMG for n = 5.

Notes: Total super edge-magic 
graphs = 4; Maximal outer 
planar graphs = 2; non-planar 
graphs = 2.
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Figure 5. SEMG for n = 6.

Notes: Total super edge-magic 
graphs = 12; Maximal outer 
planar graphs = 6; non-planar 
graphs = 6.
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where Gn − 1 is also a consecutive striped MOP on (n − 1) vertices.

Proof The theorem is proved by mathematical induction on number of vertices using bond matrix.

When n = 3, the bond matrix of the corresponding MOP is: 

⎡⎢⎢⎢⎢⎢⎣

1 2 3

1 0 1 1

2 0 1

3 0

⎤⎥⎥⎥⎥⎥⎦

W(G3) = 1 + 2 = 3

When n = 4, the bond matrix of the corresponding MOP is: 

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4

1 0 1 1 2

2 0 1 1

3 0 1

4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
W(G4) = 1 + 2 + 4 

[
=

(
n

2

)2]
 = W(G3) + 4 = 7

In the above matrix, bolded element indicates that the entries and the corresponding sum of the 
values of W(G3).

When n = 5, the bond matrix MOP is: 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5

1 0 1 1 2 2

2 0 1 1 2

3 0 1 1

4 0 1

5 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Sum = 1 + 2 + 4 + 6

[
=

(
n−1

2

)
×

(
n+1

2

)]
 = W(G4) + 6 = 13

The theorem is true for n = 3, 4, 5.

Assume that the theorem is true for n = m, and m is either even or odd

Let m be an odd.

Then the corresponding bond matrix is: 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 . . . m

1 0 1 1 2 . . .
�
m

2

�

2 0 1 1 . . .
�
m

2

�

3 0 1 . . .
�
m

2

�
− 1

4 0 . . .
�
m

2

�
− 1

. . . . . . . . .

. . . . . . . . 1

. . . . . . . . 1

m . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Since the division takes only integral part alone.

Sum = 1 + 2 + 4 + 6 + … + 
(
m−1

2

)
×

(
m+1

2

)
 = W(Gm − 1) + 

(
m−1

2

)
×

(
m+1

2

)
 = W(Gm).

Since the length of the mth column is even so each term is repeated twice.
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If n = m is even: then 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 . . . m

1 0 1 1 2 . . .
�
m

2

�

2 0 1 1 . . .
�
m

2

�
− 1

3 0 1 . . .
�
m

2

�
− 1

4 0 . . .
�
m

2

�
− 2

. . . . . . . . .

. . . . . . . . 1

. . . . . . . . 1

m . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Sum = 1 + 2 + 4 + 6 + … + 
(
m

2

)2

 = W(Gm − 1) + 
(
m

2

)2
.

Here the length of the mth column is odd, so except the first term, remaining is repeated twice.

We have to prove for n = m + 1,

If m is even, Then m + 1 is odd, the length of the (m + 1)th column will be even.

Which is: 
(
m+1

2

) (
m+1

2

) (
m+1

2

)
− 1

(
m+1

2

)
− 1 . . . 1 1

Sum = W(Gm) + 
(
m

2

)
×

(
m+2

2

)
 = W(Gm + 1)

If m is odd, then n = m + 1 is even, 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 . . m m + 1

1 0 1 1 2 . .
�
m

2

� �
m+1

2

�

2 0 1 1 . .
�
m

2

� �
m+1

2

�
− 1

3 0 1 . .
�
m

2

�
− 1

�
m+1

2

�
− 1

4 0 . .
�
m

2

�
− 1

�
m+1

2

�
− 2

. . . . . . . . .

. . . . . . . 1 1

. . . . . . . 0 1

m . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Sum = W(Gm) + 

(
m+1

2

)2

 = W(Gm + 1)

Thus, the theorem is true for the case n = m + 1 also. Hence, by induction hypothesis, the theorem 
is true for all n.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 . . m m + 1

1 0 1 1 2 . .
�
m

2

� �
m+1

2

�

2 0 1 1 . .
�
m

2

�
− 1

�
m+1

2

�

3 0 1 . .
�
m

2

�
− 1

�
m+1

2

�
− 1

4 0 . .
�
m

2

�
−�

�
m+1

2

�
− 1

. . . . . . . . .

. . . . . . . 1 1

. . . . . . . 0 1

m . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Therefore, 
W(Gn) =

⎧⎪⎨⎪⎩

W(Gn−1) +
�
n−1

2

�
×

�
n+1

2

�
if n is odd

W(Gn−1) +
�
n

2

�2
if nis even.  □

Corollary 5.1 If G is consecutive striped MOP then the independence number of G is 
[
n−a

�
∗

]
+ 1 

where [x] denote the integral part and “a” is first number in any largest maximal independent set.

Proof In each row of the bond matrix, the distance more than 1 indicates that the corresponding 
vertices are paired, which generate independent set.

Size of the independent set is increased, when any two of the independent sets have a common 
element in which the distance between each pair of elements must have more than 1. Now the 
extended independent set is called maximal independent set. Largest among all maximal indepen-
dent sets in size is called independence number.

Consecutive striped MOP graph has so many maximal independent sets of different sizes with ad-
ditional property that each maximal independent set is in the form of arithmetic progression with 
common difference α*. By using property of arithmetic progression, the independence number of 
any largest maximal independent set is: 

[
n−a

�
∗

]
+ 1 where [x]-denote integral part only and a is first 

number in any largest maximal independent set. This completes the proof.  □

Concrete Example: The following is the bond matrix of consecutive striped MOP for the case n = 8:

Independent sets Row 1: {1, 4}, {1, 5}, {1, 6},{1, 7}, {1, 8}

Row 2: {2, 5}, {2, 6}, {2, 7}, {2, 8}

Row 3: {3, 6}, {3, 7},{3, 8}

Row 4: {4, 7}, {4, 8}

Row 5: {5, 8}

Bolded sets form a Maximal Independent sets: {1, 4, 7}, {2, 5, 8}, {3, 6}

According to the corollary, Independence Number is 3.

Corollary 5.2 If G is a consecutive striped MOP then chromatic number of G is 3.

Proof By the property of the planarity, size of the maximum clique is equal to the chromatic number of 
a graph. Maximum clique for this consecutive striped MOP graph is triangle. By the above corollary, we 
group all maximal independent sets, since maximal independent sets are disjoint and are arithmetic 
progression with common difference 3(α*). So this graph has only three chromatic partitions which are:

{1, 1 + α*, 1 + 2 α*, …}

{2, 2 + α*, 2 + 2 α*, …}

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8

1 0 1 1 2 2 3 3 4

2 0 1 1 2 2 3 3

3 0 1 1 2 2 3

4 0 1 1 2 2

5 0 1 1 2

6 0 1 1

7 0 1

8 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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{3, 3 + α*, 3 + 2 α*, …}

Each partition has one color, so chromatic partition of consecutive striped MOP is 3.

This completes the proof.  □

Remark 5.1 A Perfect Matching is a matching which matches all the vertices of the graph and A near 
Perfect Matching is one in which exactly one vertex is unmatched. This can only occur when the graph 
has an odd number of vertices; such a matching must be maximum. If there is a perfect matching, 
then both the matching number and the edge cover number are n

2
, where n is the number of vertices 

of a graph. This result is true for consecutive striped MOP which is calculated from the bond matrix.

In the above matrix “1” indicates a direct edge between the vertices. Select “1” in the first row and 
then leave that corresponding row and column. Choose the next row and select “1” likewise. Finally, 
that marked “1” shows the perfect matching, sum of the entries are marked equals to matching 
number. For this table, matching Number of G6 is 3.

Remark 5.2 Each striped MOP is super edge-magic, it has SEM sequence. So it easy to calculate the 
WI for those graphs and that number is not unique. But the graphs that are isomorphic to consecu-
tive striped MOP have same WI as well as independence number, matching number, and chromatic 
number. Figure 6 exhibits the above properties.

Remark 5.3 Every maximal independent set is a dominating set. A minimal dominating set is a 
dominating set from which no vertex can be removed without destroying its dominance property. A 
graph having many minimal dominating sets with different size, smallest in size is called dominance 
number. Table 1 gives the analysis of dominance number for consecutive striped MOP.

By comparing independence number proved in corollary 5.1 and dominance number listed in Table 1, 
we can observe that, dominance number is less than the independence number. In addition, the 
equality is attained only when n = 3 and n = 6.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6

1 0 1 1 2 2 3

2 0 1 1 2 2

3 0 1 1 2

4 0 1 1

5 0 1

6 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 1. Dominance number of consecutive striped MOP
Consecutive  
striped MOP on n vertices 

3 4 5 6 7 8 9 10 11 12 13 14 15

Dominance 
 number

1 1 1 2 2 2 2 2 3 3 3 3 3

Figure 6. Isomorphic 
consecutive striped MOP.

1 2

3 4

5 6

1 2

3 4

5 6
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6. Conclusion
In this paper, the total number of super edge-magic graphs with n vertices and 2n − 3 edges are 
calculated. Also, we derived formula for WI of consecutive striped MOP. From this, we investigated 
the properties: independence number, chromatic number, matching number, and dominance num-
ber for this consecutive striped MOP through SEMS.
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