Approximation properties of modified Szász–Mirakyan operators in polynomial weighted space
Prashantkumar Patel1,2*, Vishnu Narayan Mishra1,3 and Mediha Örkcü4

Abstract: We introduce certain modified Szász–Mirakyan operators in polynomial weighted spaces of functions of one variable. We studied approximation properties of these operators.

Subjects: Advanced Mathematics; Analysis - Mathematics; Mathematics & Statistics; Pure Mathematics; Science

Keywords: Szász–Mirakyan operators; rate of convergence; weighted approximation; polynomial weight

2000 Mathematics subject classifications: primary 41A25; 41A30 ; 41A36

1. Introduction
Becker (1978) studied approximation problems for functions $f \in C_p$ and Szász–Mirakyan operators

$$S_n(f, x) = e^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} f \left(\frac{k}{n} \right),$$

$x \in \mathbb{R}_0 = [0, \infty), n \in \mathbb{N}$, where C_p with fixed $p \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ is space generated by the weighted function

ABOUT THE AUTHORS
Prashantkumar Patel is an assistant professor at SXCA and doing the PhD in Mathematics from NIT, Surat under VNM. His area of scientific interest includes approximation theory with positive linear operators and q-calculus which is proved by his research articles.

Vishnu Narayan Mishra received the PhD in Mathematics from IIT, Roorkee. His research interests are in the areas of pure and applied mathematics. He has published more than 90 research articles in reputed international journals of mathematical and engineering sciences. He is a referee and an editor of several international journals in frame of Mathematics. He guided many postgraduate and PhD students. Citations of his research contributions can be found in many books and monographs, PhD thesis and scientific journal articles.

Mediha Örkcü received the PhD in Mathematics from Gazi University Institute of Science Department of Mathematics during 2007–2011. Her research interest is Approximation theory. She has published many research articles in reputed international journals of Mathematics.

PUBLIC INTEREST STATEMENT
In this work, we define new sequence of operators depending on a parameter. We prove that these newly defined sequence of operators are positive and linear. Using the moments of these operators, we estimate continuous signals (functions). The admissible value of the involved parameter allows us to make appropriate choice of it, in order to have better approximation. We approximate these sequence of operators in terms of the modulus of continuity and the modulus of smoothness in polynomial weighted space.
\(\omega_0(x) = 1, \quad \omega_p(x) = (1 + x^p)^{-1} \) if \(p \geq 1 \),

for \(x \in \mathbb{R}_p \) and \(B_p \) be the set of all functions \(f: \mathbb{R}_0 \to \mathbb{R} \) for which \(f \omega_p \) is bounded on \(\mathbb{R}_0 \) and the norm is given by the following formula:

\[
\|f\|_p = \sup_{x \in \mathbb{R}_0} \omega_p(x)|f(x)|.
\]

Moreover, \(C_p \) be the set of all \(f \in B_p \) for which \(f \omega_p \) is a uniformly continuous function on \(\mathbb{R}_p \). The spaces \(B_p \) and \(C_p \) are called polynomial weighted spaces.

Becker (1978) theorems on degree of approximation of \(f \in C_p \) by the operators \(S_n \) were examined by Jain (1972) for \(\forall x \in \mathbb{R}_p \), \(p \in \mathbb{N}_0 \) and \(x \in \mathbb{R}_p \). Moreover, the convergence (1.2) is uniform on every interval \([x_1, x_2] \) if \(x_1, x_2 \geq 0 \).

Jain (1972) introduced generalization of Szász–Mirakyan operators (1.1) with help of a Poisson type distribution, as follows:

\[
J^\beta_n(f, x) = \sum_{k=0}^{\infty} \omega_p(k, nx)f\left(\frac{k}{n}\right),
\]

where \(x \in \mathbb{R}_p : = [0, \infty), n \in \mathbb{N}, 0 \leq \beta < 1 \) and

\[
\omega_p(k, a) = \frac{a^k}{k!} e^{-a} (a + k\beta)^{-1} \quad \text{for } a \in \mathbb{R}_0, k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}.
\]

The convergence properties and degree of approximation properties of \(J^\beta_n \) were examined by Jain (1972) for \(f \in C(\mathbb{R}_0) \), the set of all real valued continuous functions \(f \) on \(\mathbb{R}_0 \). In the particular case \(\beta = 0 \), \(J^0_n \) turn out to be well known the Szász–Mirakyan operators (Szász, 1950) which defined by (1.1). Kantorovich type extension of the operators (1.3) was discussed in Umar and Razi (1985). Various other generalization and its approximation properties of similar type of operators are studied in Agratini (2013, 2014), Mishra and Patel (2013), Mishra, Khatrì, Mishra, and Deepmala (2013), Örkcü (2013), Patel and Mishra (2014, 2015), Rempulska and Tomczak (2009), Tarabie (2012), Bardaro and Mantellini (2006, 2009). In this paper, we modify operators \(J^\beta_n \) given by (1.3), i.e. we consider operators

\[
J^\beta_n(f; a_n, b_n; x) = \sum_{k=0}^{\infty} \omega_p(k, a_n x)f\left(\frac{k}{b_n}\right), \quad x \in \mathbb{R}_0, \quad n \in \mathbb{N}
\]

for \(f \in C([0, \infty)) \), where \((a_n)^\infty_{n=1} \) and \((b_n)^\infty_{n=1} \) are given increasing and unbounded numerical sequence such that \(a_n \geq 1, b_n \geq 1 \) and \(\left(\frac{a_n}{b_n}\right)^\infty_{n=1} \) is non decreasing and

\[
\frac{a_n}{b_n} = 1 + o\left(\frac{1}{b_n}\right),
\]

If \(a_n = b_n = n \) for all \(n \in \mathbb{N} \), then the operators (1.5) reduce to the operators (1.3).

The paper is organized as follows. In our manuscript, we shall study approximation properties of operators (1.5). In Section 2, we shall examine moments of the operators \(J^\beta_n(f; a_n, b_n; x) \). We discuss approximation properties of the operators (1.5) in Section 3.
2. Moments of $J_n^ρ(f; a_n, b_n; x)$

In order to obtain moments of $J_n^ρ(f; a_n, b_n; x)$, we need some background results, which are as follows:

Lemma 1 (Jain, 1972) \(0 < \alpha < \infty, 0 \leq \beta < 1\) and let the generalized Poisson distribution given by (1.4). Then

\[
\sum_{k=0}^{\infty} a_k(\alpha,k) = 1. \tag{2.1}
\]

Lemma 2 (Jain, 1972) \(0 < \alpha < \infty, 0 \leq \beta < 1\). Suppose that

\[
S(r, \alpha, \beta):= \sum_{k=0}^{\infty} (\alpha \beta k)^{r+k-1} \frac{e^{-\alpha \beta k}}{k!}, \quad r = 0, 1, 2, \ldots
\]

and

\[
a S(0, \alpha, \beta): = 1.
\]

Then

\[
S(r, \alpha, \beta) = a S(r - 1, \alpha, \beta) + \beta S(r, \alpha + \beta, \beta). \tag{2.2}
\]

Also,

\[
S(r, \alpha, \beta) = \sum_{k=0}^{\infty} \beta^k(\alpha + k \beta) S(r - 1, \alpha + k \beta, \beta). \tag{2.3}
\]

From (2.2) and (2.3), when \(0 \leq \beta < 1\), we get

\[
S(1, \alpha, \beta) = \frac{1}{1 - \beta};
\]

\[
S(2, \alpha, \beta) = \frac{\alpha}{(1 - \beta)^2} + \frac{\beta^2}{(1 - \beta)^3};
\]

\[
S(3, \alpha, \beta) = \frac{\alpha^2}{(1 - \beta)^3} + \frac{\alpha \beta^2}{(1 - \beta)^4} + \frac{2 \beta^3}{(1 - \beta)^5};
\]

\[
S(4, \alpha, \beta) = \frac{\alpha^3}{(1 - \beta)^4} + \frac{6 \alpha^2 \beta^2}{(1 - \beta)^5} + \frac{4 \alpha \beta^3}{(1 - \beta)^6} + \frac{11 \beta^4}{(1 - \beta)^7} + \frac{8 \beta^5 + 6 \beta^6}{(1 - \beta)^8}. \tag{2.4}
\]

In the following lemma, we have computed moments up to fourth order.

Lemma 3 Let \(0 \leq \beta < 1\), then the following equalities hold:

1. \(J_n^ρ(1; a_n, b_n; x) = 1\);

2. \(J_n^ρ(t; a_n, b_n; x) = \frac{a_n x}{b_n (1 - \beta)} + x a_n\);

3. \(J_n^ρ(t^2; a_n, b_n; x) = \frac{x^2 a_n}{b_n (1 - \beta) b_n^2} + \frac{x^2 a_n}{b_n (1 - \beta)^2 b_n^2};\)

4. \(J_n^ρ(t^3; a_n, b_n; x) = \frac{x^3 a_n}{b_n (1 - \beta)^3 b_n^3} + \frac{x^3 a_n}{b_n (1 - \beta)^4 b_n^3} + \frac{x(1 + 2 \beta) a_n}{(1 - \beta)^5 b_n^3};\)

5. \(J_n^ρ(t^4; a_n, b_n; x) = \frac{x^4 a_n}{b_n (1 - \beta)^4 b_n^4} + \frac{6 x^4 a_n}{(1 - \beta)^5 b_n^4} + \frac{x^2 (7 + 8 \beta) a_n^2}{(1 - \beta)^6 b_n^4} + \frac{x (1 + 8 \beta + 6 \beta^2) a_n}{(1 - \beta)^7 b_n^4}.\)

Proof Using equalities (2.1), (2.4–2.7) and by simple commutation, we obtain
Lemma 4 \ Let 0 \leq \beta < 1, then the following equalities hold:

\(J_n^{(\beta)}(t; a_n, b_n; x) = \sum_{k=0}^{\infty} \frac{a_n}{b_n^k} \sum_{r=0}^{\infty} \frac{1}{r!} (a_n x + r k \beta + \beta) r e^{-a_n x k \beta + \beta} t^r \)

\(J_n^{(\beta)}(t; a_n, b_n; x) = \frac{a_n}{b_n} \frac{1}{1 - \beta(t)} \)

\(J_n^{(\beta)}(t^2; a_n, b_n; x) = \sum_{k=0}^{\infty} \frac{a_n}{b_n^k} \left[(a_n x + k \beta)^2 - e^{-a_n x k \beta} \right] \frac{k^2}{b_n^3} \)

\(J_n^{(\beta)}(t^3; a_n, b_n; x) = \sum_{k=0}^{\infty} \frac{a_n}{b_n^k} \left[(a_n x + k \beta)^3 - e^{-a_n x k \beta} \right] \frac{k^3}{b_n^3} \)

\(J_n^{(\beta)}(t^4; a_n, b_n; x) = \sum_{k=0}^{\infty} \frac{a_n}{b_n^k} \left[(a_n x + k \beta)^4 - e^{-a_n x k \beta} \right] \frac{k^4}{b_n^3} \)

Proof of the above lemma, follows from the linearity of the operators \(J_n^{(\beta)}(t; a_n, b_n; x) \).

By equality (1.6) and \(\lim_{n \to \infty} \beta_n = 0 \), we obtain
\[
\lim_{n \to \infty} b_n^j j_n^{(\delta)}(t - x; a_n, b_n; x) = 0;
\]
\[
\lim_{n \to \infty} b_n^j j_n^{(\delta)}((t - x)^2; a_n, b_n; x) = x;
\]
\[
\lim_{n \to \infty} b_n^j j_n^{(\delta)}((t - x)^3; a_n, b_n; x) = 0;
\]
\[
\lim_{n \to \infty} b_n^j j_n^{(\delta)}((t - x)^4; a_n, b_n; x) = 3x^2,
\]
for every \(x \in \mathbb{R}_0^+\).

3. Approximation properties

\begin{lemma}
Let \(r \in \mathbb{N}\) be a fixed number. Then there exist positive numerical coefficients \(\lambda_{i,j,r} \leq 1 \leq j \leq r\), depending only on \(r\) and \(j\) such that
\[
J_n^j(t; a_n, b_n; \cdot) = \frac{1}{b_n^{j}(1 - \beta)^j} \sum_{j=1}^{r} \frac{\lambda_{i,j,r}}{(1 - \beta)^{-j}}(a_n x)^j,
\]
for all \(x \in \mathbb{R}_0^+\) and \(n \in \mathbb{N}\). Moreover, we have \(\lambda_{i,j,r} = 1 = \lambda_{i,r,r}\).
\end{lemma}

The proof follows by a mathematical induction argument.

\begin{lemma}
For a given \(p \in \mathbb{N}_0\) and \((a_n)_{n=1}^{\infty}\) and \((b_n)_{n=1}^{\infty}\) there exists a positive constant \(\mathcal{M}_1(b_1, p, \beta)\) such that
\[
\left\| J_n^j \left(\frac{1}{\omega_p(t)}; a_n, b_n; \cdot \right) \right\|_p \leq \mathcal{M}_1(b_1, p, \beta), \quad n \in \mathbb{N}.
\]
Moreover, for every \(f \in C_p\) we have
\[
\left\| J_n^j(f; a_n, b_n; \cdot) \right\|_p \leq \mathcal{M}_1(b_1, p, \beta) \| f \|_p, \quad n \in \mathbb{N}.
\]

The formula (1.4), (1.5) and the inequality (3.2), show that \(J_n^j, n \in \mathbb{N}\) is a positive linear operator from the space \(C_p\) into \(C_{p_0}\).

\begin{proof}
If \(p = 0\), then
\[
\left\| J_n^j \left(\frac{1}{\omega_0(t)}; a_n, b_n; \cdot \right) \right\|_0 = \sup_{x \in \mathbb{R}_0^+} | J_n^j(1; a_n, b_n; x) | = 1.
\]
If \(p \geq 1\), then by (1.5), (1.6) Lemma 2 and Lemma 5, we get
\[
\omega_p(x) f_n^j \left(\frac{1}{\omega_p(t)}; a_n, b_n; x \right) = \omega_p(x) \left(1 + f_n^j(t^p; a_n, b_n; x) \right)
\]
\[
= \frac{1}{1 + x^p} \left\{ 1 + \frac{1}{b^{j}_n(1 - \beta)^j} \sum_{j=1}^{p} \frac{\lambda_{i,j,r}}{(1 - \beta)^{-j}}(a_n x)^j \right\}
\]
\[
= \frac{1}{1 + x^p} + \frac{1}{(1 - \beta)^j} \sum_{j=1}^{p} \frac{\lambda_{i,j,r}}{(1 - \beta)^{-j}} \left(\frac{a_n x}{b^{j}_n} \right)^j \frac{x^j}{1 + x^p}
\]
\[
\leq 1 + \frac{1}{(1 - \beta)^j} \sum_{j=1}^{p} \frac{\lambda_{i,j,r}}{(1 - \beta)^{-j}} \frac{1}{b^{j}_n} = \mathcal{M}_1(b_1, p, \beta),
\]
for all \(x \in \mathbb{R}_0^+\) and \(n \in \mathbb{N}\). From this, (3.1) follows.

By (1.5) and definition of norm, we have
\[
\| J_n^j(f; a_n, b_n; \cdot) \|_p \leq \| J_n^j \left(\frac{1}{\omega_p(t)}; a_n, b_n; \cdot \right) \|_p \| f \|_p,
\]
for every \(f \in C_p\) and \(n \in \mathbb{N}\). From (3.1), the inequalities (3.2) is achieved.
Theorem 1 For every $p \in \mathbb{N}$ there exists a positive constant $M_2(b_1,p,\beta)$ such that

$$\alpha_p(x)J_n^{(p)}\left(\frac{(t-x)^2}{\alpha_p(t);a_n,b_n};x\right) \leq M_2(b_1,p,\beta) \left[x^2 \left(\frac{a_n}{(1-\beta)b_n} - 1 \right)^2 + \frac{x}{(1-\beta)^3 b_n} \right], \quad (3.3)$$

for all $x \in [0,1]$ and $n \in \mathbb{N}$.

Proof If $p = 0$, then (3.3) follows from values of $J_n^{(p)}(t-x);a_n,b_n;x)$. Let $J_n^{(p)}(f;x) = J_n^{(p)}(f;a_n,b_n;x)$. Notice that

$$J_n^{(p)}\left(\frac{(t-x)^2}{\alpha_p(t)^2};x\right) = J_n^{(p)}\left(\frac{(t-x)^2}{t};x\right) + J_n^{(p)}\left(\frac{t^2(t-x)^2}{x};x\right). \quad (3.4)$$

For $p = 1$, we get

$$J_n^{(p)}\left(\frac{(t-x)^2}{\alpha_p(t)^2};x\right) = J_n^{(p)}\left(\frac{(t-x)^2}{t};x\right) + J_n^{(p)}\left(\frac{t^2(t-x)^2}{x};x\right) = (1+x)J_n^{(p)}\left(\frac{(t-x)^2}{x};x\right) + J_n^{(p)}\left(\frac{(t-x)^2}{x};x\right).$$

Therefore,

$$(1+x)J_n^{(p)}\left(\frac{(t-x)^2}{\alpha_p(t)^2};x\right) = x^2\left(\frac{a_n}{(1-\beta)b_n} - 1 \right)^2 + \frac{x}{(1-\beta)^3 b_n} + x^3 \left(\frac{a_n}{(1-\beta)^3 b_n} - 1 \right)^3 + \frac{3x^2 a_n}{(1+x)b_n^2(1-\beta)^3} \left(\frac{a_n}{(1-\beta)b_n} - 1 \right) + \frac{x a_n (1+2\beta)}{(1+x)(1-\beta)^3 b_n^2} \leq M_2(b_1,p,\beta) \left[x^2 \left(\frac{a_n}{(1-\beta)b_n} - 1 \right)^2 + \frac{x}{(1-\beta)^3 b_n} \right].$$

If $p \geq 2$, then by Lemma 5, we get

$$\alpha_p(x)J_n^{(p)}\left(t^p(t-x)^2;\frac{x}{x};x\right) = \alpha_p(x) \left\{ J_n^{(p)}\left(\frac{t^{p+1}}{x};x\right) - 2xJ_n^{(p)}\left(t^{p+1};x\right) + x^2J_n^{(p)}(t^2;x) \right\}$$

$$= x \frac{a_n b_n}{b_n(1-\beta)} \left\{ \sum_{j=1}^{p+1} \frac{\lambda^{p+1,\beta}_j b_n^{p+1} (1-\beta)^p x^j}{(1-\beta)^{p+1} \left(1 + x^\beta \right)^2} - \frac{2}{b_n(1-\beta)} \sum_{j=1}^{p+1} \frac{\lambda^{p+1,\beta}_j \left(1 + x^\beta \right)^2}{(1-\beta)^{p+1}} \frac{a_n}{b_n} \right\} + \frac{1}{(1-\beta)^{p+1} \left(1 + x^\beta \right)^2} \frac{a_n}{b_n} \right\} \frac{x^{p+2}}{1 + x^\beta}$$

$$= x \frac{a_n b_n}{b_n(1-\beta)} \left\{ \sum_{j=1}^{p+1} \frac{\lambda^{p+1,\beta}_j b_n^{p+1} (1-\beta)^p x^j}{(1-\beta)^{p+1} \left(1 + x^\beta \right)^2} - \frac{2}{b_n(1-\beta)} \sum_{j=1}^{p+1} \frac{\lambda^{p+1,\beta}_j \left(1 + x^\beta \right)^2}{(1-\beta)^{p+1}} \frac{a_n}{b_n} \right\} + \frac{1}{(1-\beta)^{p+1} \left(1 + x^\beta \right)^2} \frac{a_n}{b_n} \right\} x^{p+2}.$$

If $p \geq 2$, then by Lemma 5, we get
Since $0 \leq \frac{a_n}{b_n} \leq 1$ for $n \in \mathbb{N}$, $(1 - \beta)^{-1} \leq (1 - \beta)^{-3}$, we have

$$\omega_2(x) J_n^{(p)} \left(t^p (t - x)^2, x \right) \leq \frac{x}{b_n (1 - \beta)^3} \left(\sum_{j=1}^{p+1} \frac{b_n^{j+1} (1 - \beta)^{p+1-j}}{b_1^{j+1} (1 - \beta)^{p+1-j}} + 2 \sum_{j=1}^{p} \frac{b_n^{j+1} (1 - \beta)^{p+1-j}}{b_1^{j+1} (1 - \beta)^{p+1-j}} \right) + \frac{x^2}{(1 - \beta)^{p-1}} \left(\frac{a_n}{b_n (1 - \beta)} - 1 \right)^2. \tag{3.5}$$

for $x \in \mathbb{R}_0$, $n \in \mathbb{N}$. Using (3.5) in (3.4), we obtain (3.3) for $p \geq 2$.

Thus, the proof is completed.

Now, we approximate $J_n^{(p)}(f; a_n, b_n; x)$ using the modulus of continuity $\omega_2(f, C_p)$ and the modulus of smoothness $\omega_2(f, C_p)$ of function $f \in C_p$, $p \in \mathbb{N}_0$

$$\omega_1(f, C_p, t) = \sup_{0 \leq h \leq t} \| \Delta_h f(\cdot) \|_{p}, \quad \omega_2(f, C_p, t) = \sup_{0 \leq h \leq t} \| \Delta^2_h f(\cdot) \|_{p},$$

for $t \geq 0$, where

$$\Delta_h f(x) = f(x + h) - f(x), \quad \Delta^2_h f(x) = f(x) - 2f(x + h) + f(x + 2h).$$

Let

$$\xi_{n, \delta}(x) = x^2 \left(\frac{a_n}{b_n (1 - \beta)} - 1 \right)^2 + \frac{x}{b_n (1 - \beta)^3}, \quad x \in \mathbb{R}_0, x \in \mathbb{N}. \tag{3.6}$$

Theorem 2 Suppose that $f \in C_p^{\delta}$ with a fixed $p \in \mathbb{N}_0$. Then there exists a positive constant $M_3(b_1, p, \beta)$ such that

$$\omega_2(x) J_n^{(p)}(f; a_n, b_n; x) - f(x) \leq \| f \|_p \left(\frac{a_n}{b_n (1 - \beta)} - 1 \right) x + \| f'' \|_p M_3(b_1, p, \beta) \xi_{n, \delta}(x), \tag{3.7}$$

for all $x \in \mathbb{R}_0$, $n \in \mathbb{N}$.

Proof Notice that $J_n^{(p)}(0; a_n, b_n; x) = f(0)$, $n \in \mathbb{N}$, which implies (3.7) for $x = 0$.

Let $x > 0$ and let $J_n^{(p)}(f; x) = J_n^{(p)}(f; a_n, b_n; x)$. For $f \in C_p^{\delta}$ and $t \in \mathbb{R}_0$

$$f(t) = f(x) + f'(x)(t - x) + \int_x^t (t - u)f''(u)du. \tag{3.8}$$

Applying $J_n^{(p)}(f; x)$ on both sides, we obtain

$$J_n^{(p)}(f(t); x) = f(x) + f'(x)J_n^{(p)}(t - x); x) + J_n^{(p)}(t - u)f''(u)du; x).$$

Notice that

$$\int_x^t (t - u)f''(u)du \leq \| f'' \|_p \left(\frac{1}{\omega_p(t)} + \frac{1}{\omega_p(x)} \right)(t - x)^2.$$

Now, using above inequality, we have
\[\alpha_p(x)J_n^p(f(t); x) - f(x) \leq \|f''\|_p \left(\frac{1}{\alpha_p(t)} + \frac{1}{\alpha_p(x)} \right) (t-x)^2; x \]
\[+ \|f''\|_p \alpha_p(x)J_n^p \left(\frac{(t-x)^2}{\alpha_p(t)}; x \right) + j_n^p \left((t-x)^2; x \right) \].

Now, using (3.3) and (3.6), we get
\[\alpha_p(x)J_n^p(f(t); x) - f(x) \leq \|f''\|_p \frac{\alpha_n}{b_n(1-\beta)} - 1 \|x + \|f''\|_p \xi_n(x)M_3(b_1, n, \beta) \].

Thus, the proof is completed.

Corollary 1 Let \(\rho(x) = (1 + x)^{-1}; x \in \mathbb{R}_0 \). Suppose that \(f \in C^2_p \) with a fixed \(p = 2 \). Then there exists a positive constant \(M_4(b_1, p, \beta) \) such that
\[\|J_n^p(f; \rho_n, b_n; x) - f(x)\|_p \leq \left(1 - \frac{\alpha_n}{b_n(1-\beta)} \right) \|f''\|_p + M_4(b_1, p, \beta) \|f''\|_p b_n^{-1}(1-\beta)^{-1}, n \in \mathbb{N} \]

Theorem 3 Suppose that \(f \in C_p \) with a fixed \(p \in \mathbb{N}_0 \). Then there exists a positive constant \(M_5(b_1, p, \beta) \) such that
\[\alpha_p J_n^p(f; \rho_n, b_n; x) - f(x) \leq \left| \frac{\alpha_n}{b_n(1-\beta)} \right| \|x + \|f''\|_p \xi_n(x)M_2(b_1, p, \beta) \].

for all \(x > 0 \) and \(n \in \mathbb{N} \) where \(\xi_n(x) \) is defined in (3.6). For \(x = 0 \), it follows that \(J_n^p(f; \rho_n, b_n; 0) = f(0) \).

Proof We shall apply the Steklov function \(f_h(x) \) for \(f \in C_p \):
\[f_h(x) = \frac{4}{h^2} \int_0^{h/2} \int_0^{h/2} [f(x + s + t) - f(x + 2(s + t))]dsdt, \]
\(x \in \mathbb{R}_0, h > 0 \), for which we have
\[f_h''(x) = \frac{1}{h^2} \int_0^{h/2} \left[8 \Delta_{h/2} f(x + s) - 2 \Delta_h f(x + 2s) \right]ds, \]
\[f_h''(x) = \frac{1}{h^2} \left[8 \Delta_{h/2} f(x) - \Delta_h f(x) \right]. \]

Hence, for \(h > 0 \), we have
\[\|f_h - f\|_p \leq \omega_2(f, C_p; h), \]
\[\|f_h''\|_p \leq 5h^{-1} \omega_2(f, C_p; h), \]
\[\|f_h''\|_p \leq 9h^{-2} \omega_2(f, C_p; h), \]
which show that \(f_h \in C^2_p \) if \(f \in C_p \). By denoting \(J_n^p(f; \rho_n, b_n; x) \) by \(J_n^p(f; x) \) we can write
\[\alpha_p(x)J_n^p(f; x) - f(x) \leq \alpha_p(x) \{ |J_n^p(f - f_h; x)| + |J_n^p(f_h; x) - f_h(x)| \}
\[+ |f_h(x) - f(x)| \} : = A_1 + A_2 + A_3, \]
for $x > 0, h > 0$ and $n \in \mathbb{N}$. By (3.2) and (3.9), we have
\[A_1 \leq \|M_1(b_1, p, \beta)\|f - f_n\|p \leq \|M_1(b_1, p, \beta)\|f, C_p; h, h. \]

Applying Theorem 2, inequalities (3.10) and (3.11), we get
\[
A_2 \leq \|f\|p \left\{ \frac{a_n}{b_n(1 - \beta)} - 1 \right\} x + \|f\|p M_3(b_1, p, \beta)\|\xi_{n, \beta}(x)\|
\leq \|f, C_p; h\| \frac{\alpha_n(x)}{b_n(1 - \beta)} \frac{5x}{h} \left(\frac{a_n}{b_n(1 - \beta)} - 1 \right) + \frac{9}{h^2} \|f, C_p; h\| M_3(b_1, p, \beta)\|\xi_{n, \beta}(x)\|
\]

Combining these and setting $h = \sqrt{\xi_{n, \beta}(x)}$, for fixed $x > 0$ and $n \in \mathbb{N}$, we obtain the desired result.

THEOREM 4 Let $f \in C_p, p \in \mathbb{N}_0$ and let $\rho(x) = (1 + x^2)^{-1}$ for $x \in \mathbb{R}_0$. Then there exists a positive constant $\mathcal{M}_4(b_1, p, \beta)$ such that
\[
\| f^{(h)}_n(f; a_n, b_n; x) - f \|p \leq \left(1 - \frac{a_n}{b_n(1 - \beta)} \right) \sqrt{\frac{\alpha_n(f, C_p; 1)}{b_n(1 - \beta)^2}} + M_4(b_1, p, \beta)\|\alpha_n(f, C_p; 1)\| \frac{1}{\sqrt{b_n(1 - \beta)^2}}, \quad n \in \mathbb{N}
\]

From Theorems 3 and 4, we derive the following corollary:

COROLLARY 2 Let $f \in C_p, p \in \mathbb{N}_0, \beta_n \to 0$ as $n \to \infty$. Then for $f^{(h)}_n$ defined by (1.5), we have
\[
\lim_{n \to \infty} f^{(h)}_n(f; a_n, b_n, x) = f(x), \quad x \in \mathbb{R}_0.
\]

Furthermore, the convergence of (3.12) is uniformly on every interval $[x_1, x_2]$, where $x_2 - x_1 \geq 0$.

Remark 1 The error of approximation of a function $f \in C_p, p \in \mathbb{N}_0$ by $f^{(h)}_n(f; a_n, b_n, x)$ where $a_n = n^r + \frac{1}{n}$ and $b_n = n^r, r > 1$ is smaller than by the operators (1.3).

Funding

The authors received no direct funding for this research.

Author details

Prashantkumar Patel1,2
E-mail: prashant225@gmail.com
ORCID ID: http://orcid.org/0000-0002-8184-1199

Vishnu Narayan Mishra1,3
E-mails: vishnu_narayanmishra@yahoo.co.in;
vishunarayanmishra@gmail.com
ORCID ID: http://orcid.org/0000-0002-2159-7710

Mediha Örkcü4
E-mail: medihaorkcu@gazi.edu.tr

1 Department of Applied Mathematics & Humanities, S. V. National Institute of Technology, Surat, 395 007, Gujarat, India.
2 Department of Mathematics, St. Xavier’s College, Ahmedabad, 380 009, Gujarat, India.
3 L. 1627 Awdah Puri Colony Beniganj, Phase-III, Opposite - Industrial Training Institute (ITI), Ayodhya Main Road, Faizabad, Uttar Pradesh, 224 001, India.
4 Faculty of Sciences, Department of Mathematics, Gazi University, 06500, Teknikokullar, Ankara, Turkey.

Citation information

Cite this article as: Approximation properties of modified Szász–Mirakyan operators in polynomial weighted space, Prashantkumar Patel, Vishnu Narayan Mishra & Mediha Örkcü, Cogent Mathematics (2015), 2: 1106195.

