
Yücel, Cogent Mathematics (2015), 2: 1045223
http://dx.doi.org/10.1080/23311835.2015.1045223

APPLIED & INTERDISCIPLINARY MATHEMATICS | RESEARCH ARTICLE

Numerical approximations of Sturm–Liouville 
eigenvalues using Chebyshev polynomial 
expansions method
Uğur Yücel1*

Abstract: In this paper, an efficient technique based on the Chebyshev polynomial 
expansions for computing the eigenvalues of second- and fourth-order Sturm–
Liouville boundary value problems is proposed. This technique reduces the given 
Sturm–Liouville problem to an integral equation. The resulting integral equation 
is then transformed into the eigenvalue equation by calculating the integrals at 
the grid points using the Chebyshev expansions. Thus, the required eigenvalues of 
the given problem are obtained by solving this eigenvalue equation. The excellent 
performance of this scheme is illustrated through some numerical examples, and 
comparison with other methods is presented.
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1. Introduction
Sturm–Liouville problems (SLPs) arise throughout engineering mathematics. They arise directly as  
eigenvalue problems in one space dimension. For example, they describe the vibrational modes of  
various systems, such as the vibrations of a string or the energy eigenfunctions of a quantum mechanical 
oscillator, in which case the eigenvalues correspond to the resonant frequencies of vibration or energy 
levels. They also commonly arise from linear PDEs in several space dimensions when the equations are 
separable in some coordinate system, such as cylindrical or spherical coordinates.

Mathematicians have studied SLPs for over 200 years. It has a highly developed theory and remains 
an active area of interest. Therefore, in this work, we consider numerical solutions of both second- and 
fourth-order SLPs described below.
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A regular second-order SLP is a second-order linear, homogeneous, ordinary differential equation 
of the form

 

together with the seperated (each with one boundary point) homogeneous boundary conditions

 

where αi and βi, i = 1, 2, are the real constants. In Equation 1, λ is the unknown eigenvalue pertinent to 
the differential operator defined by the left-hand side of Equation 1, the interval (a, b) is finite, the 
functions p, p′, q, and w are in L1 (a, b) with p(x) > 0 and w(x) > 0 for x ∈ (a, b). This is distinguished from 
the case when p or w vanishes at some point in the interval [a, b] or when the interval is of infinite 
length, in which case the problem is called a singular SLP. For a regular second-order SLP, it is found 
that all eigenvalues are real and non-negative. In addition, there are infinitely many eigenvalues that 
are discretely distributed and hence do not fill out any interval. More information on the mathematical 
theory of second-order SLPs may be found in Amrein, Hinz, and Pearson (2005) and Pryce (1993).

A non-singular fourth-order SLP consists of a fourth-order linear ODE of the form

 

together with seperated, self-adjoint boundary conditions specified at both ends of the domain  
(a, b), two boundary conditions at the end x = a, and another two boundary conditions at the end x = b. 
Basically, there are three types of boundary conditions and their combinations commonly used with 
Equation 3 in applications. These boundary conditions are given as y = 0, y� = 0 for clamped end, 
y = 0, y�� = 0 for hinged (or simply supported) end, and y�� = 0, y�� = 0 for free end. The technical 
conditions for the problem to be non-singular are: the interval (a, b) is finite; the functions P(x), S(x), 
Q(x), W(x), and 1∕P(x) are in L1 (a, b); and the essential infima of P(x) and W(x) are both positive. Under 
these assumptions, it is well known that the eigenvalues are bounded from below. They can be  
ordered as �

0
≤ �

1
≤ �

2
≤ ⋯ ≤ �k ≤ ⋯, where λk → ∞ as k → ∞, and where each eigenvalue has 

multiplicity at most 2. More information on the mathematical theory of fourth-order SLPs may be 
found in Greenberg (1991) and Greenberg and Marletta (1995).

In most cases, it is not possible to obtain the eigenvalues of the above problems analytically. 
However, there are various approximate methods as, for example, the weighted residual methods, 
the variational methods, and finite difference and finite elements methods. Extensive literature  
reviews for the numerical approximations of second-order and fourth-order SLPs can be found in 
Yücel (2006) and Yücel and Boubaker (2012), respectively. In order to obtain more efficient numerical 
results, several ways have been devised in the last years. Recently, El-gamel and Abd El-hady (2013) 
discussed and compared two useful schemes for second-order Sturm–Liouville eigenvalue problems: 
differential quadrature method (DQM) and collocation method with sinc functions. Saleh Taher, Malek, 
and Momeni-Masuleh (2013) proposed a new technique based on Chebyshev differentiation matrix 
for computing eigenvalues of a general class of regular fourth-order SLPs. Yuan, Ye, Xiao, Kennedy, 
and Williams (2014) introduced the exact dynamic stiffness vibration method for solving regular sec-
ond- and fourth-order SLPs. Most recently, Amodio and Settanni (2015) discussed the solution of regu-
lar and singular SLPs by means of high-order finite difference schemes. They described a method to 
define a discrete problem and its numerical solution by means of linear algebra techniques.

In the literature, to the best of the author’s knowledge, there is no study on the Chebyshev poly-
nomial expansions (El-gendi’s method) (El-gendi, 1969) applied for SLPs. On the other hand, this 
method is an efficient discretization technique for obtaining accurate numerical solutions of 
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differential, integral, and integro-differential equations. El-gendi’s method is based on expanding 
the unknown function in terms of Chebyshev polynomials. Based on the discrete ortogonality rela-
tionships of these polynomials, several methods for solving linear and non-linear ODEs (Fox, 1962) 
and integral differential equations (Elliott, 1963) were proposed at about the same time. They were 
found to have considerable advantage over the finite difference methods. Since then, these meth-
ods have become standard. They are now part of the larger family of spectral methods (Boyd, 2000). 
They consist in expanding the unknown function in a series of Chebyshev polynomials, trancating 
this series, and then substituting the approximation in the actual equation, and finally determining 
equations for the coefficients. However, El-gendi (1969) described a new method for the numerical 
solution of differential, integral, and integro-differential equations by computing directly the values 
of the functions rather than the Chebyshev coefficients. These two approaches are equivalent in the 
sense that if the function values at some grid points are known, the Chebyshev coefficents for the 
function can be directly computed. The method has been extended to solve initial value problems in 
time-dependent quantum field theory and second-order boundary value problems in fluid (Mihaila & 
Mihaila, 2002). Recently, it has been applied to solve the generalized Kuramoto–Sivashinsky equa-
tion (Khater & Temsah, 2008) and convection–diffusion equation (Temsah, 2009).

Our goal in this paper is to extend Chebyshev polynomial expansions, known as El-gendi’s method 
(El-gendi, 1969), to deal with the second- and fourth-order SLPs given above. To achieve this goal, 
we first consider the numerical approximations of second-order SLP (1) with Drichlet boundary 
conditions

 

Then, we consider numerical approximations of a simple form of Equation 3 with some specified end 
conditions to demonstrate directly the use of El-gendi’s method on the fourth-order problems. In 
addition, we choose the fourth-order problems (3) to be squares of the second-order problems (1) 
for numerical illustrations. This is because if we have a second-order problem with Drichlet boundary 
conditions given above and the differential operator,

 

then the corresponding fourth-order problem (3) has the differential operator

 

where

 

The boundary conditions, in this case, are

 

The eigenvalues of the fourth-order problem are then simply the squares of the eigenvalues of the 
second-order problem which means that they are all non-negative (Greenberg & Marletta, 1995).

This paper is organized as follows. In Section 2, we first review the Chebyshev polynomial expan-
sions method (El-gendy’s method), then we give some new formulas for the matrix approximation 
of integrals which are necessary to deal with higher order problems. The method is then applied to 
second-order and a simple form of the fourth-order SLPs in Section 3. Numerical examples are dis-
cussed in Section 4, and some conclusions are drawn in Section 5.

(4)y(a) = 0, y(b) = 0

(5)�y = −

(
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+ q(x)y
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(7)P = p2, S = 2pq − pp��, Q = q2 − pq�� − p�q�

(8)
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y(b) = 0, p�(b)y�(b) + p(b)y��(b) = 0
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2. The method of Chebyshev polynomial expansions
In this section, we describe the method of Chebyshev expansion by following closely the procedures 
outlined in El-gendi (1969). It is assumed that a function y(x), which is continuous and of bounded 
variation in the interval [-1, 1], can be approximated by
 

where the summation symbol with double prime indicates that the terms with suffixes i = 0 and i = N 
are to be halved, Ti(x) is the Chebyshev polynomials of the first kind of degree i ≤ N, and the coeffi-
cients ai are defined by

 

In the equation above, the grid points xj, the so-called Chebyshev points, are given by

 

The approximate formulae (Equation 9) is exact at x = xj given by Equation 11.

It is known by the Chebyshev trancation theorem (Boyd, 2000) that the error in approximating y(x) 
by the sum of its first N terms is bounded by the sum of the absolute values of all the neglected coef-
ficients. A detailed discussion of this theorem and the convergence theory for Chebyshev polynomi-
als can be found in Boyd (2000).

Using the above approximation for the aforementioned function y(x), the integral

 

at the grid points

 

can be approximated as

 

We can now write this equation in matrix form as

 

where D is a square matrix of order N  +  1 and the actual values of the elements of this matrix (
dij , i = 0, 1,… ,N, j = 0, 1,… ,N

)
 can be easily calculated using the right-hand side of Equation 14. 

This can be achieved using modern computing tools like Maple and Matlab. For N = 4, the elements of 
the matrix D, obtained by Maple, are given below.

(9)y(x) =
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��aiTi(x)
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2

N
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(11)xj = cos

(
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N

)
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The equation 
N∑
j=0

dij = 1 − cos
�
i�

N

�
 for i  =  0,  1,  2,  …,  N can be used for checking purposes. The  

elements of the column vector y in Equation 15 are given by

 

It can be seen that the approximation of the integral (12) based on the Chebyshev expansion (9) can 
be obtained without computing the Chebyshev coefficients (Equation 10). In other words, the right-
hand side of Equation 15 gives the approximate values of the integral (12) at the points (13), rather 
than the Chebyshev coefficients of the integral (10). However, the two approaches are equivalent in 
the sense that if we know the values of the integral at xk given by Equation 13, its Chebyshev coef-
ficients can be directly computed by using a formula similar to Equation 10. The main advantage of 
using this approach is that for a certain value of N, the elements of matrix D can be eveluated once 
and for all.

The following approximations which are necessary for practical applications to be discussed later 
can be deduced from relation (Equation 15).

 

where d̃ is an (N + 1) row vector whose elements are the last row of matrix D.

 

where E = D2.

 

where ẽ is an (N + 1) row vector whose elements are the last row of matrix E.

 

where Ê is an (N + 1) ×  (N + 1) matrix whose elements are given by êij = 𝜙jeij, i,  j = 0, 1, 2, …, N, 

�j = �

(
tj

)
, and eij the elements of matrix E.

 

where s̃ is an (N + 1) row vector whose elements are the last row of matrix DD̂;  D̂ is an (N + 1) × (N + 1) 
matrix whose elements are given by d̂ij = 𝜙jdij.

D =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0.11940355 0.19006343 −0.02426406 0.01328673 −0.00559644

0.03333333 0.62022005 0.40000000 −0.08688672 0.03333333

0.07226310 0.52004659 0.82426406 0.34326990 −0.05273689

0.06666666 0.53333333 0.80000000 0.53333333 0.06666666

⎤
⎥⎥⎥⎥⎥⎦

(16)yi = y

(
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(
i �

N
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, i = 0, 1,… ,N
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y(t)dt dx = ẽ y
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(21)

[
∫
1

−1
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where H = D4.

 

where h̃ is an (N + 1) row vector whose elements are the last row of matrix H.

Standard Chebyshev polynomials of the first kind Tr(x) are valid over the interval [−1, 1]. However, 
this interval can be normalized using the change of variable x → (x + 1)∕2. In this case, the 
Chebyshev expansion of the integral will be in terms of the shifted Chebyshev polynomials of the first 
kind defined by

 

which are valid over the interval [0, 1]. All the properties of T∗r (x) can be deduced from those of 
Tr(2x−1) (Fox & Parker, 1968). Therefore, when the range is [0, 1], we have the approximation

 

where D̄ =
1

2
D and the right-hand side defines the integral at the grid points

 

The elements of the column y in Equation 25 are also defined at these points. Hence, for practical 
applications, the operators from Equations 18 to 23 can be similarly defined by replacing the matrix 
D by D̄ and the points Equation 13 by Equation 26.

As can be seen from the above formulas, the range of x in the computational domain should either 
be [−1, 1] or [0, 1]. For practical applications, the physical domain is neither [−1, 1] nor [0, 1], but 
rather [a, b], then for this case, we can perform a coordinate transformation. This can be easily done 
by remembering that any finite range, a ≤ t ≤ b, can be transformed to the basic range −1 ≤ x ≤ 1 and/
or the range 0 ≤ x ≤ 1 with the change of variables

 

3. Applications to SLPs
In this section, we consider the numerical approximations of second- and fourth-order Sturm–
Liouville eigenvalues using the matrix representations of the integrals obtained above.

3.1. Second-order problem
The general SLP (1) can be easily reduced to the so-called Liouville normal form (or equivalently the 
Schrödinger equation)
 

(22)

[
∫
x

−1
∫
x�

−1
∫
x��

−1
∫
x���

−1

y(t)dt dx���dx�� dx�

]
= Hy

(23)∫
1

−1
∫
x

−1
∫
x�

−1
∫
x��

−1

y(t)dt dx��dx�dx = h̃ y

(24)T∗r (x) = Tr(2x − 1), 0 ≤ x ≤ 1

(25)
[
∫
x

0

y(t)dt

]
= D̄ y

(26)xk =
1

2

[
1 − cos

(
k�

N

)]
, k = 0, 1,… ,N

(27)t =
1

2

(
b − a

)
x +

1

2

(
b + a

)
, t =

(
b − a

)
x + a

(28)−y��(t) + q̃(t) y(t) = 𝜆 y(t) , ã < t < b̃
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where now all the properties of the original equation can be associated with the properties of the 
coefficient q̃(∙) on the transformed interval 

(
ã, b̃

)
. In this form, the properties of the original differ-

ential equation may be easier to consider for both analytical and numerical purposes. The endpoint 
classification at a, b of Equation 1 is invariant under the Liouville transformation and is identical with 
the endpoint classification at ã, b̃. Therefore, we consider the above differential equation with the 
boundary conditions (4).

We first perform a coordinate transformation of the first form of Equation 27. Then, Equation 28 
becomes

 

where q̂(x) =
(
(b̃ − ã)∕2

)2
q̃(x) and 𝜆̂ =

(
(b̃ − ã)∕2

)2
𝜆. The boundary conditions, in this case, are

 

It should be noted that translating the equation from the t domain to the x domain leaves the eigen-
values unaltered.

To apply the method developed in the previous section, we first integrate Equation 29 from the 
lower limit −1 to an arbitrary value of x ∈ [−1, 1] to obtain

 

Similarly, integrating the resulting Equation 31 once more yields

 

where we have made use of the boundary condition y(−1) = 0. In this equation, y′(−1) is an unknown 
that has to be determined by introducing boundary conditions (Equation 30). To do this, we first 
specialize Equation 32 for x = 1, together with the boundary conditions given by Equation 30. Then, 
we obtain

 

We can now substitute the so obtained y′(−1) into Equation 32 to obtain the final integrated form

 

Using the techniques developed in the previous section to calculate integrals, this integral equation 
can now be transformed into the following eigenvalue equation:

 

where A and B are (N + 1) × (N + 1) matrices whose entries are given by

 

(29)−y��(x) + q̂(x) y(x) = 𝜆̂ y(x) , −1 < x < 1

(30)y(−1) = 0, y(1) = 0

(31)−y�(x) + y�(−1) + ∫
x

−1

q̂(t)y(t)dt = 𝜆̂ ∫
x

−1

y(t)dt

(32)−y(x) + (x + 1)y�(−1) + ∫
x

−1
∫
t

−1

q̂(t�)y(t�)dt�dt = 𝜆̂ ∫
x

−1
∫
t

−1

y(t�)dt�dt

(33)y�(−1) = −
1

2 ∫
1

−1
∫
t

−1

q̂(t�)y(t�)dt�dt +
𝜆̂

2 ∫
1

−1
∫
t

−1

y(t�)dt�dt

(34)

− y(x) −
(x + 1)

2 ∫
1

−1
∫
t

−1

q̂(t�)y(t�)dt�dt + ∫
x

−1
∫
t

−1

q̂(t�)y(t�)dt�dt

= 𝜆̂

[
∫
x

−1
∫
t

−1

y(t�)dt�dt −
(x + 1)

2 ∫
1

−1
∫
t

−1

y(t�)dt�dt

]

(35)Ay = 𝜆̂By

(36)aij = −𝛿ij − uis̃j + êij , bij = eij − uiẽj , i, j = 0, 1, 2,… ,N
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In the above equation, δij is the Kronecker delta, ui =
(
xi + 1

)
∕ 2 the elements of an (N + 1) column 

vector u, s̃j the elements of (N + 1) row vector s̃ given by Equation 21 with 𝜙 = q̂, êij the elements of 
(N + 1) × (N + 1) matrix Ê given by Equation 20 with 𝜙 = q̂, eij the elements of (N + 1) × (N + 1) matrix 
E, and ẽj the elements of (N + 1) row vector ẽ given by Equation 19. It should be noted that proper 
definition of Equation 36 can be easily obtained when the transformed range is [0, 1]. It is important 
to note that the first and last columns of B have no effect (since multuplied by zero). Hence, the  
eigenvalue Equation 35 can be reduced to a (N − 1) × (N − 1) system by eliminating the first and 
last rows and columns of matrices A and B.

Equation 35 is a generalized eigenvalue problem. When B is non-singular, this equation is  

mathematically equivalent to 
(
B-1A

)
y = 𝜆̂ y, and when A is non-singular, it is equivalent to (

A-1B
)
y =

(
1 ∕ 𝜆̂

)
y. Thus, in theory, if one of the matrices A or B is known to be non-singular, the 

problem could be reduced to a standard eigenvalue problem. However, for this reduction to be  
satisfactory from the point of view of numerical stability, it is necessary not only that B (or A) should 
be non-singular, but that it should be well-conditioned with respect to inversion. There are many 
underlying computational routines that can be used for solving these problems. Once we have the 
computed 𝜆̂ values, they can be used to obtain the eigenvalues of the original problem (28) using 
𝜆 = 𝜆̂∕

(
(b̃ − ã)∕2

)2
.

3.2. A simple case of the fourth-order problem
Although the numerical results of Equation 3 with some specified end conditions, obtained using the 
solutions of the second-order problem, will be given in the next section, we consider here a simple 
case of Equation 3 to demonstrate directly the use of El-gendi’s method on the fourth-order prob-
lems. Therefore, we put P(x) = W(x) = 1, S(x) = Q(x) = 0, a = 0, and b = 1 in Equation 3. Then, we obtain 
the following simple equation, the steady-state Euler-Bernoulli equation for the deflection y(x) of a 
vibrating beam of length 1:
 

As mentioned earlier, there are three types of boundary conditions and their combinations com-
monly used with this equation in applications. In this work, the formulations are given only for one 
of them. Other types of boundary conditions can be handled similarly. We assume that the clamped 
end is at x = 0 and the simply supported end is at x = 1,

 

A coordinate transformation is not necessary for this case since the physical domain is already [0, 1]. 
By successive integration of Equation 37 from the lower limit 0 to an arbitrary value of x ∈ [0, 1], we 
obtain

 

 

 

 

(37)y(4)(x) = 𝜆 y(x), 0 < x < 1

(38)y(0) = y�(0) = 0, y(1) = y��(1) = 0

(39)y���(x) − y���(0) = � ∫
x

0

y(t)dt

(40)y��(x) − y��(0) − x y���(0) = � ∫
x

0
∫
x�

0

y(t)dtdx�

(41)y�(x) − xy��(0) −
x2

2
y���(0) = � ∫

x

0
∫
x�

0
∫
x��

0

y(t)dtdx��dx�

(42)y(x) −
x2

2
y��(0) −

x3

6
y���(0) = � ∫

x

0
∫
x�

0
∫
x��

0
∫
x���

0

y(t)dtdx���dx��dx�
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As can be seen from Equation 42, there are two unknowns, y′′(0) and y′′′(0), to be determined by 
introducing boundary conditions. Specializing Equations 40 and 42 for x  =  1, together with the 
boundary conditions given by Equation 38, and then solving the resulting system of equations for the 
two unknowns, we obtain the final integrated form of Equation 42 as

 

Using the techniques developed in Section 2 to calculate integrals, this integral equation can be 
transformed into the following generalized eigenvalue equation:

 

where A and B are (N + 1) × (N + 1) matrices whose entries are given by

 

Here, vi =
(
x3i − 3x

2

i

)
∕ 2 are the elements of an (N + 1) column vector v, zi =

(
x2i − x

3

i

)
∕ 4 the ele-

ments of an (N + 1) column vector z, hij the elements of (N + 1) × (N + 1) matrix H given by Equation 22, 
h̃j the elements of (N + 1) row vector h̃ given by Equation 23, and ẽj the elements of (N + 1) row vector 
ẽ given by Equation 19. For the same reason given in Section 3.1, the eigenvalue equation (44) can be 
reduced to a (N − 1) × (N − 1) system. A computational routine can now be used to solve Equation 
44 for obtaining eigenvalues of the problem.

4. Numerical results
We present here the results obtained by applying our algorithms to the numerical solution of some 
second- and fourth-order SLPs in practice. First two problems which have exact solutions are chosen 
to demonstrate the efficiency and accuracy of the method developed in this work. We will use the 
relative error εk which is defined as
 

to measere the performance of the method. In the last problem, we choose the fourth-order prob-
lem (3) to be square of the second-order problem (1) as discussed in Section 1. Numerical calcula-
tions are carried out using Maple and Matlab.

Problem 1. Our first example for the second-order SLP is given by

 

which arises when solving the one-dimensional wave equation utt−uxx = 0 (the standard model for an 
oscillating string of length 1 with fixed endpoints) using a “seperation of variables” method. The 
exact eigenvalues of this problem are �k = k

2
�
2, k = 1, 2, 3, … .

Table 1 lists the relative errors of the obtained results with different number of the Chebyshev 
points N. It is observed from this table that in order to have good approximations to the first kth  
eigenvalues, at least 2k Chebyshev points have to be used. It is also observed that the computed 
values for the lower eigenvalues have a better accuracy than those for the higher eigenvalues. As 
the number of grid points further increased to above 2k, the accuracy of the obtained results espe-
cially for the higher eigenvalues can be further improved as shown in Table 1.

(43)

y(x) = �

[
∫
x

0
∫
x�

0
∫
x��

0
∫
x���

0

y(t)dtdx���dx��dx�

+

(
x3 − 3x2

2

)
∫
1

0
∫
x�

0
∫
x��

0
∫
x���

0

y(t)dtdx���dx��dx� +

(
x2 − x3

4

)
∫
1

0
∫
x

0

y(t)dtdx

]

(44)Ay = �By

(45)aij = 𝛿ij , bij = hij + vih̃j + ziẽj , i, j = 0, 1, 2,… ,N

(46)�k =

||||||
�
exact
k − �

approx

k

�
exact
k

||||||
, k = 1, 2, 3,… ,

(47)−y��(x) = �y(x), y(0) = y(1) = 0
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Problem 2. As a second example, we consider the following fourth-order problem

 

which corresponds to the case already discussed in Section 3.2. The exact eigenvalues of problem 
(48) can be found by solving tanh

(
�
1∕ 4

)
− tan

(
�
1∕ 4

)
= 0.

In Table 2, the relative errors of the first 10 eigenvalues of this problem for several values of the 
number of Chebyshev points are given. It can be seen that the method developed in this work is very 
efficient for finding the eigenvalues of the given fourth-order problem.

Problem 3. In this example, we consider the Coffey–Evans equation (Greenberg and Marletta, 1995)

 

which arises in a model of the coupling between dipoles in polarizable liquids such as used in liquid 
crystal displays (Pryce, 1986). The parameter μ, typically in the range 0–50, measures the strength 
of coupling.

The lowest eigenvalue λ0 of this problem is close to zero. Figure 1 shows the computed eigenvalues 
(λ1–λ19) of this problem for several values of the parameter μ, μ = 10, μ = 20, and μ = 30. In Table 3, we 
compare our results with the available results of Pryce (1986) for λk where k ≤ 4. It can be observed that 
our results are in good agreement with those obtained by Pryce (1986). Pryce’s paper was concerned 
with Prüfer shooting methods for finding eigenvalues and corresponding eigenfunctions of the classical 
SLP (1) with appropriate boundary conditions given by Equation 2. Such methods use a transformation 

(48)y(4)(x) = � y(x), y(0) = y�(0) = 0, y(1) = y��(1) = 0

(49)−y�� +
(
�
2 sin

2
2x − 2� cos 2x

)
y = �y, y(−� ∕ 2) = y(� ∕ 2) = 0

Table 1. Relative errors of calculated results for Problem 1
k �

exact

k
ɛk

N = 12 N = 24 N = 36
  1 9.8696044010893 6.209399e−14 1.799826e−16 3.599652e−16

  2 39.4784176043574 5.488263e−11 5.399477e−16 8.999129e−16

  3 88.8264396098042 4.030874e−08 3.199690e−16 4.799535e−16

  4 157.9136704174297 7.326063e−06 7.199303e−16 0.000000e+00

  5 246.7401100272339 4.333980e−04 2.465041e−14 2.303777e−16

  6 355.3057584392169 7.291857e−03 1.841422e−13 3.199690e−16

  7 483.6106156533785 5.254565e−02 6.026152e−11 4.348967e−15

  8 631.6546816697189 2.216018e−01 3.401451e−10 5.399477e−16

  9 799.4379564882380 7.214591e−01 3.163688e−08 1.564293e−15

10 986.9604401089358 2.324092e+00 8.785227e−07 3.340477e−15

11 1194.2221325318123 1.102225e+01 2.189959e−05 1.180448e−13

12 1421.2230337568676 3.179505e−04 1.791827e−13

13 1667.9631437841015 2.639745e−03 2.428031e−11

14 1934.4424626135142 1.345588e−02 3.340653e−11

15 2220.6609902451055 4.634721e−02 8.812858e−10

16 2526.6187266788756 1.202738e−01 7.011934e−08

17 2852.3156719148246 2.596393e−01 1.380718e−06

18 3197.7518259529520 5.050217e−01 1.788821e−05

19 3562.9271887932582 9.438169e−01 1.660706e−04

20 3947.8417604357433 1.799175e+00 1.081240e−03
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to phase amplitude variables (θ, r) in the (y′, y)-plane (a Prüfer transformation) and solve the resulting 
equations by a shooting method using an ODE initial value code. Pryce studied the error control of such 
methods with specific reference to two published codes based on this technique.

The corresponding fourth-order problem for the Equation 49 can be obtained by using Equations 5–9:

 

with the boundary conditions

(50)

y(4) −
[
2
(
�
2 sin

2
2x − 2� cos 2x

)
y�
]�

+

[(
�
2 sin

2
2x − 2� cos 2x

)2
− 8

(
�
2 cos2 2x − �

2 sin
2
2x + � cos 2x

)]
y = �y

Table 2. Relative errors of calculated results for Problem 2
k �

exact

k
ɛk

N = 12 N = 24 N = 36
  1 237.72106753 1.954193e−12 4.782363e−16 2.391181e−16

  2 2496.48743786 1.838806e−09 1.092929e−15 3.096633e−15

  3 10867.58221698 4.789974e−08 4.519194e−15 2.343286e−15

  4 31780.09645408 4.814241e−05 2.289470e−16 5.036834e−15

  5 74000.84934916 1.933174e−03 1.822901e−13 1.533833e−14

  6 148634.47728577 2.572511e−02 4.578776e−12 1.253172e−14

  7 269123.43482664 1.626128e−01 2.255631e−10 5.169238e−14

  8 451247.99471928 6.953546e−01 3.474120e−09 1.870393e−13

  9 713126.24789600 2.832007e+00 1.438088e−07 3.013529e−13

10 1075214.10347396 1.683336e+01 4.069691e−06 8.705049e−14

Figure 1. Eigenvalues of Coffey–
Evans equation.
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As mentioned earlier in Section 1, the eigenvalues of this fourth-order problem are simply the 
squares of the eigenvalues of the second-order problem (49). The results are shown in Table 4 where 
the comparisons are made with the available data obtained by Greenberg and Marletta (1995) for 
μ = 10 and μ = 30. Greenberg and Marletta (1995) developed a shooting method to approximate the 
eigenvalues and eigenfunctions of the fourth-order problem (3). The problem was first reduced to  
a Hamiltonian system. They developed an efficient approach to solve this system based on the  
approximation of the coefficients in the differential equation and a suitable zero-counting algorithm. 
The zeros which they counted were not zeros of a solution of the fourth-order equation, but nullities 
(rank deficiencies) of a certain 2 × 2 matrix formed from solutions of the fourth-order equation.

5. Conclusions
In this paper, we present a method to obtain good approximations to the eigenvalues of second- and 
fourth-order SLPs defined on finite domains based on a spectral method known as El-gendi’s method. 
This method provides a robust algorithm of computing the integral of a non-singular function defined 
on a finite domain. Therefore, the method presented in this work converts the given SLP into an inte-
gral equation. The resulting integral equation is then transformed into the eigenvalue equation by 
calculating the integrals at the grid points using the Chebyshev expansions. The required eigenvalues 
are then obtained by solving this eigenvalue equation. The method is quite general and has some 
special advantages which were discussed in detail in Boyd (2000). The advantages of El-gendi’s meth-
od over finite difference methods were also discussed in Boyd (2000) and so will not be repeated here.

Through test examples which have exact solutions, it was found that in order to obtain accurate 
numerical results for the first kth eigenvalues, at least 2k Chebyshev points have to be used. 
Comparison with other published works in the literature showed that the method produces highly 
accurate results for the eigenvalues of the SLPs considered in this work. It may be concluded that the 
presented method is very powerful and efficient in finding the approximate solutions of SLPs arising 
in science and engineering.

(51)y(−� ∕ 2) = y��(−� ∕ 2) = 0, y(� ∕ 2) = y��(� ∕ 2) = 0

Table 3. Comparison of calculated results of the present work for Problem 3 with the results of 
Pryce (1986)
Index 
k

μ = 10 μ = 20 μ = 30
Pryce 

(1986)
Present 

work
Pryce 

(1986)
Present 

work
Pryce 

(1986)
Present 

work
0 −0.00000066 0.00000005 −0.00000287 −0.00000015 −0.00000005 −0.00006416

1 37.80590010 37.80590023 77.91619396 77.91620152 117.9463064 117.94863349

2 69.79528236 69.79528143 151.4627743 151.46276528 231.6649293 231.65447078

3 70.54751205 70.54750974 151.4633026 151.46322366 231.6649342 231.66492931

4 71.40519810 71.40525148 151.4634228 151.46365429 231.6649044 231.66492931

Table 4. Comparison of calculated results of the present work with the results obtained in 
Greenberg and Marletta (1995)
Index 
k

μ = 10 μ = 30
Greenberg and 
Marletta (1995)

Present work Greenberg and 
Marletta (1995)

Present work

2 4872.19471 4871.38131 53668.6347 53668.6395

3 4976.95126 4976.95113 53668.6435 53668.6417

4 5098.70998 5098.70994 53668.6435 53668.6279
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