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Abstract: In this article, we define a new three-step implicit iteration and study its
strong convergence, stability and data dependence. It is shown that the new three-
step iteration has better rate of convergence than implicit and explicit Mann itera-
tions as well as implicit Ishikawa-type iteration. Numerical example in support of
validity of our results is provided.
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1. Introduction

Implicit iterations are of great importance from numerical standpoint as they provide accurate
approximation compared to explicititerations. Computer-oriented programmes for the approximation
of fixed point by using implicit iterations can reduce the computational cost of the fixed-point
problem. Numerous papers have been published on convergence of explicit as well as implicit
iterations in various spaces (Anh & Binh, 2004; Berinde, 2004; Berinde, 2011; Chidume & Shahzad,
2005; Chugh & Kumar, 2013; Ciric, Rafig, Caki¢, & Ume, 2009; Ciri¢, Rafig, Radenovi¢, Rajovi¢, & Ume,
2008; Khan, Fukhar-ud-din, & Khan, 2012; Rhoades, 1993; Shahzad & Zegeye, 2009). Data dependence
of fixed points is a related and new issue which has been studied by many authors; see (Gursoy,
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In this paper, a new three-step implicit iteration is
defined as:

x, =Wk, _,,Ty.,a,)

Y, =W@,Tz,6,)
z, =W(x,Tx,,7,)

wherea,, B, and ¥, are sequences in [0, 1].

For this three-step implicit iteration, strong
convergence and stability results are proved in
convex metric spaces. Also, we have done the
comparison of rate of convergence of newly
defined iteration with implicit and explicit Mann,
and implicit and explicit Ishikawa-type iterations
analytically and numerically. It is found that our
newly defined implicit iteration has better rate of
convergence than these iterations. Also, data-
dependence result for new implicit iteration is
proved in hyperbolic spaces.
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Karakaya, & Rhoades, 2013; Khan, Kumar, & Hussain, 2014 and references therein). In computational
mathematics, it is of theoretical and practical importance to compare the convergence rate of
iterations and to find out, if possible, which one of them converges more rapidly to the fixed point.
Recent works in this direction are (Chugh & Kumar, 2013; Ciric, Lee, & Rafig, 2010; Hussian, Chugh,
Kumar, & Rafig, 2012; Khan et al., 2014; Kumar et al., 2013). Motivated by the works of Ciric (Ciric,
1971; Ciric, 1974; Ciric, 1977; Ciric et al., 2010; Ciri¢ & Nikoli¢, 2008a, 2008b; Ciric et al., 2009; Ciri¢ et
al.,, 2008; Ciric, Ume, & Khan, 2003) and the fact that three-step iterations give better approximation
than one-step and two-step iterations (Glowinski & Tallec, 1989), we define a new and more general
three-step implicit iteration with higher convergence rate as compared to implicit Mann, explicit
Mann and implicit Ishikawa iterations.

Let K be a nonempty convex subset of a convex metric space X and T:K — K be a given mapping.
Then for x, € K, we define the following implicit iteration:

x, =Wk, _,Ty,,a,)
Y, =W@,Tz,8,)

z, =W(x,Tx,,7,) (1.1)
where {a,}, {B,} ;{7,}are sequencesin [0, 1].
Equivalence form of iteration (1.1) in linear space can be written as

X, =o.X, 1+ 1 —a)Ty,
Y, =62, +1-p)Tz,
Z, = 1,X, + (1 = ypTX, (IN)
Putting 7, = 1 in (IN), we get Ishikawa-type implicit iteration:
X, =a X, +1—-a)Ty,
Yo =BX,+ 1= B)Tx, (1)
Putting , = #, = 1 in (IN), we get well-known implicit Mann iteration (Ciri¢ et al., 2008; Ciric et al.,
2003):
X, =Wk, _,x,a)=ax, , +(1 —a)Tx,

(IM)
Also, Mann iteration (Mann, 1953) is defined as :
X =1 —a )X, +a,Tx, M)

Zamfirescu operators (Zamfirescu, 1972) are most general contractive-like operators which have
been studied by several authors, satisfying the following condition: for each pair of points x, y in X,
at least one of the following is true:

(i) d(Tx,Ty) < pd(x,y)
(i) d(Tx,Ty) < qld(x, Tx) + d(y, Ty)]

iD)  d(Tx, Ty) < rld(x, Ty) + d(y, TX)] (1.2)
where p, g, r are nonnegative constants satisfying0<p<1,0<q,r< %
Z-operators are equivalent to the following contractive contraction:
d(Tx, Ty) < cmax {d(x,y), {d(x, Tx) + d(y, Ty)} /2, {dx, Ty) + d(y, Tx)} /2}
vx,yeX,0<c<1 (1.3)
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The contractive condition (1.3) implies
d(Tx,Ty) < 2ad (x, Tx) + ad (x,y),Vx,y € X (1.4)

where a = mox{ c, i } (see Berinde, 2004).

Rhoades (1993) used the following more general contractive condition than (1.4): there exists
c € [0, 1), such that

d(Tx, Ty) < cmax {d(x,y), {d(x, TX) + d(y, Ty) } /2,d(x, Ty),d(y, Tx)} Vx,y € X (1.5)
Osilike (1995) used a more general contractive definition than those of Rhoades’ there exists

ae(0,1),L =0, such that

d(Tx,Ty) <Ld (x,Tx) + ad (x,y) Vx,y € X (1.6)

We use the contractive condition due to Imoru and Olatinwo (Olatinwo & Imoru, 2008), which is
more general than (1.6): there exists a e [0, 1) and a monotone-increasing function : R* — R* with
¢(0) =0, such that

d(Tx, Ty) < ¢p(d(x, X)) + ad(x,y), ae[0,1),¥x,y € X @

Also, we use the following definitions and lemmas to achieve our main results.
Definition 1.1 (Takahashi, 1970) A map W:X? X [0, 1] — X is a convex structure on X if
d(U, W(X;y’ A)) < Ad(u, X) + (1 - ﬂ)d(UyY)

forallx,y,ueXand A € [0, 1]. A metric space (X, d) together with a convex structure W is known as
convex metric space and denoted by (X, d, W). A nonempty subset C of a convex metric space is
convex if W(x,y, 4) € Cforallx,yeCand 4 € [0, 1].

All normed spaces and their subsets are the examples of convex metric spaces. But there are many
examples of convex metric spaces which are not embedded in any normed space (see Takahashi,
1970). Several authors extended this concept in many ways later, one such convex structure is hyper-
bolic space introduced by Kohlenbach (2004) as follows:

Definition 1.2 (Kohlenbach, 2004) A hyperbolic space (X, d, W) is a metric space (X, d) together
with a convexity mapping W: X2 X [0, 1] — X satisfying

(W1)d(z, W(x,y, ) < (1 - D) d(z,x) + Ad(z,y)

(W2) dW(x,y, 2,), W(X,y, 4,)) = |41 = 4,| d(x,y)

(W3) W(X:Y; l) = W(yr X, 1 - /1)

(Wa)d(W(x,z, 1), W(y,w, 1)) < (1 - Dd(x,y) + Ad(z,w) forallx,y,z,weXand 4, A, 4, € [0, 1].
Evidently, every hyperbolic space is a convex metric space but converse may not true. For example,
ifX=R,W(x,y, 1) = Ax + (1 — A)y and defined (x,y) = % for x,y e R, then (X, d, W) is a convex
metric space but not a hyperbolic space.

The stability of explicit as well as implicit iterations has extensively been studied by various
authors (Berinde, 2011; Khan et al., 2014; Olatinwo, 2011; Olatinwo & Imoru, 2008; Ostrowski, 1967;
Timis, 2012) due to its increasing importance in computational mathematics, especially due to
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revolution in computer programming. The concept of T-stability in convex metric space setting was
given by Olatinwo (Olatinwo, 2011):

Definition 1.3. (Olatinwo, 2011) Let (X, d, W) be a convex metric space and T:X — X a self-mapping.

Let{x,}  , C X be the sequence generated by an iterative scheme involving 7, which is defined by

=er2,: n=0,1,2,... (1.8)

where x; € Xis the initial approximation and fT is some function having convex structure, such that
a, € [0, 1] Suppose that {x } converges to a fixed- point p of T. Let {y, }~, C X be an arbitrary se-
quence and set e, = d(yn+1, fTa ). Then, the iteration (1.8) is said to be T-stable with respect to T if
and only if lim €, = 0, implies lim y, = p.
n—oo n—oo

LEMMA 1.4 (Berinde, 2004; Khan et al., 2014) If 6 is a real number such that 0 <6< 1 and {€, },‘;":0 is
a sequence of positive numbers such that llm e . =0, then for any sequence of positive numbers
{u,} 4 satisfying

u,,<éu+€,n=0,1,2,.
we have limu, = 0.
N—oo

Definition 1.5 (Berinde, 2004) Suppose {a,} and {b } are two real convergent sequences with limits
a and b, respectively. Then {a } is said to converge faster than {b } if

a,-a
b —b

lim =0

n—oo

Definition 1.6  (Berinde, 2004) Let {u,} and {v } be two fixed-point iterations that converge to the
same fixed point p on a normed space X, such that the error estimates

Ju, —pll < a,
and
IV =PIl < b,

are available, where {a } and {b } are two sequences of positive numbers (converging to zero) .If {a }
converge faster than {b }, then we say that {u } converge faster to p than {v }.

Definition 1.7 (Gursoy et al., 2013) Let T, T, be two operators on X. We say T, is approximate
operator of T if for all x e X and for a fixed € > 0, we have d(Tx, T )x) < €.

LEMMA 1.8  (Gursoy et al, 2013; Khan et al,, 2014) Let {a,} " be a nonnegative sequence for which
there exists n, N, such that for all n 2 n, one has the following inequality:

a,.,<(1-r)a,+rt,

n+1
wherere(0,1),forallneN, Y r,=candt >0 VneN.
n=1

Then,0 < limsupa, < l|m supt,.

n—oo

Having introduced the implicit iteration (1.1), we use it to prove the results concerning convergence,
stability and rate of convergence for contractive condition (1.7) in convex metric spaces. Furthermore,
data-dependence result of the same iteration is proved in hyperbolic spaces.
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2. Convergence and stability results for new implicit iteration in convex metric spaces
THEOREM 2.1 Let K be a nonempty closed convex subset of a convex metric space X and T be a quasi-
contractive operator satisfying (1.7) with F(T) # ¢. Then, for x, € C, the sequence {x } defined by (1.1)

with 3 (1 - a,) = oo, converges to the fixed point of T.

Proof Using (1.1) and (1.7), we have for p € F(T),

d(x,,p) =dW(x,_, Ty, ), p)
<a,dx, ,p)+ 1 —a)dTy,,p)
< a,d(x, 4,p) + (1 - a)ad(y,, p)

Now, we have the following estimates:
d(ynr P) = d(W(Zn: TZn, ﬁn)r P)
< pd,p)+ 1 -p)d(Tz,p)

< p.d(z,,p)+ (1 -p)ad(z,,p)
=[g,+a(l-p)ldz,,p)

and

d(z,,p) = dW(x,, Tx,,7,),P)
<y,dx,,p)+ (1 —y)d(Tx,,p)
<y,dx,,p)+ (1 —y)ad(x,,p)

=y, +a(l -y)ld(x,,p)

Inequalities (2.1), (2.2) and (2.3) yield

d(x,,p) < a,d(x,_;,p) + (1 —ay)al, +al — )1y, +all —y,)d(x,, p)
which further implies

{1-1-ayalp, +al = )y, +al —y)l}d(x,,p) < a, d(X,_,P)

and therefore

®,

d
% P) < T[T "aalp + al = Ny, + ad =71

d(x,_;,p)

et = i
Q,  1-(1-ayalp,+a(l-p)lly,+al-y,)]

then

1-— Py _ 1-(-ayalp,+ad—pg)llr, +al—r,)l-a,
Q, 1-(1-ay)alp,+a(1-p )]y, +a(l-y,)]
>21-Q-eyalp, +al - p)lly,+a(l =y )] +a,

which further implies,

<A -ayalp, +ad - p)lly, +a(l —y)] +a,

=1 -ayalp, +ad - )y, +a -yl + a,
=1-0e)al-1-a)A -1 -A-a)1-7)]+aq,

L
Qn

<(1-a)a+a,

=1-(1-a)1-0).

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)
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Using (2.6), (2.4) becomes

dx,,p) <[1-(1-«a)1-aldx,_,,p)

<[]t - -a)a-aidexg,p)

i=1

- ¥ (1-ap(l-a)
e =

< d(x,,p) (2.7)

n
But )} (1 — a;) = o0, hence (2.7) yields lim d(x,,, p) = 0. Therefore, {x } converges to p.
nN—oo

i=1

THEOREM 2.2 Let K be a nonempty closed convex subset of a convex metric space X and T be a quasi-
contractive operator satisfying (1.7) with F(T) # ¢. Then, for x, € C, the sequence {x } defined by (1.1)
witha, <a<1,3 (1-a)=-eo,is T-stable.

Proof Suppose that {p,}, C K be an arbitrary sequence, ¢, = d(p,, W(p,_,, Tq,, a,)), where q, =
W(r,Tr,B),r.=W(p,Tp,r)andlet lime =0.

nN—oo

Then, using (1.7), we have

d(p,,p) < d(p,, W(p,_,1q,,a,) +dW(p,_,,Tq,,a,),p)
<&, +a,dp, ;,p) + (1~ a,)d(q,,p)
<&, +a,dp, ,,p)+ (1 -a)edTp,p)+ (1 - a,)ad(q,,p)
< ey + 4,0, 1,P) + (L~ a)alf, +a(l  f)lly, +a(L - 1,)1d(p,,P) @8

which implies
{1-QQ=ayalp,+al - p)lly, +al —y)1}dp,,p) <&, +a,dp,_,,p)
and therefore

Q,

< n
d(p"’p) = 1-(1-ayalp,+a1-p)llr,+a(l-y,)] d(p"‘l’p)

13
n 2.9
* 1-(1-a,)alf,+a(1=p,)lr, +a(1-7,)] (29)

But from (2.6), we have

[04

n <1-(1- 1-
1-(1—ayalp, +al - p)lly, +ad —y)] ~ (1 -a)d -0 (2.10)

Hence (2.9) becomes

3

d(pnrp) < [1 - (1 - an)(l - a)]d(pn—l’p) + 1_ (1 — an)a[ﬁn T G(l — ﬂn)][yn n G(l — )/n)] (211)

Using a, < a<1and ae (0, 1),we have
1-1-0a)1-0a)<1
Hence, using Lemma 1.4, (2.11) yields lim p_ = p
N—oo

Conversely, if we let lim p, = p then using contractive condition (1.7), it is easy to see that
lime, = 0. e

Nn—o0
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Therefore, the iteration (1.1) is T-stable.

Remark 2.3 As contractive condition (1.7) is more general than those of (1.2)-(1.6), the conver-
gence and stability results for implicit iteration (IN) using contractive conditions (1.2)-(1.6) can be
obtained as special cases.

Remark 2.4 As implicit Mann iteration (IM) and Ishikawa-type iteration (II) are special cases of new
implicit iteration (1.1), results similar to Theorem 2.1 and Theorem 2.2 hold for implicit Mann itera-
tion (IM) and Ishikawa-type iteration (II).

3. Rate of convergence for implicit iterations

THEOREM 3.1 Let K be a nonempty closed convex subset of a convex metric space X and T be a quasi-
contractive operators satisfying (1.7) with F(T) # ¢. Then, for x, € C, the sequence {x } defined by (1.1)
with > (1 - a,) = e, converges faster than implicit Mann iteration (IM) as well as Ishikawa-type iteration
(II) to the fixed-point of T.

Proof For implicit Mann iteration (IM), we have

dx,,p) < a,d(x, ,,p) + (1 —a)d(Tx,,p)
< a,d(X,_4,p) + (1 - ay)ad(x,, p)

which further yield

[1-(1-ayaldx,,p) < a,d(x,_;,p)

and so
d(x_,p) < *n d(x,_1,p)

P =11 " gg Vv

1-1-ay)a 3.1)
an p— Aﬂ

If we take e — B
then,

A a 1-[1-a)a+a]
1-L=1- d = d T >1-[1-

B, T-(-a)a_  I-(-ayg =&~ [(-@a+al
and hence
B—n <(1-a)a+a,
n

(3.2)
Keeping in mind the Berinde’s Definition 1.6, inequalities (2.6) and (3.3) yields fast convergence of
three-step implicit iteration (IN) than implicit Mann iteration (IM).

Also, for explicit Mann iteration, we have

d(X,,; p)= d(W(Xn_l, TXn_ly an)r P)
<a,dx,_,,p)+ (1 —a)d(Tx,_,,p)

33
<a,dx, ;,p)+ (1 —a)adx,_;,p) 3:3)
<la, + (1 - ayald(x, ;,p)
Similarly, for implicit Ishikawa-type iteration (II), we have
dx,,p) <{(1-ayall-1-a)d - )] +a,}dX, ;,p) (3.4)
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Using (3.1), (3.2) and (3.3), we conclude that implicit Mann iteration converges faster than corre-
sponding explicit Mann iteration. Also, from (2.5) and (3.4), it is obvious that new three-step implicit
iteration converges faster than Ishikawa-type implicit iteration (II).

Example 3.2 LetK=10, 1], T(x) = f, x#0anda,=p,=y,=1- n>25andforn=1,2,

vy 24,0 =B =y =0, then for implicit Mann iteration, we have

A
Vn’

n

X, =a X, 1+ (1 —a)Tx,
4 4 X,

=(1- 5 )%t 5

which further implies

fdl- ()

and so

()

Tovn-1"T s

Also, for the new three-step iteration (IN), we have

(3.5)

vn
2
y, = 1—i z, = 1—i X,
vn vn
and so
xn=<1—\%>xn_1+ L

which further implies

Pt

and hence

n*? — 4n
xn= 3/2 Xn—l
n*?—n+6y/n-9

n 3/2 4
_ H( 1 4j )Xo (3.6)
i=25 i3/2—i+6\/f—9
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Also, for explicit Mann iteration, we have

X, =X+ (1 —a)Tx,_, (1 - \;’_) %% = (1 - %) X4 (3.7)
n

For two-step Ishikawa-type implicit iteration, we have

(3.8)

_h-tvn _ n-b4yn _F ( i—4Vi )

X— —
" n—yvn+3 " n—yh+3 T i—Vi+3

Using (3.5) and (3.6), we have
X,(IN) H< P12 _ 4 ><\/i—1)_ﬁ 2532 1 4
X,(IM) L5\ P2 — iy 64/ - Vi-4) 52 -5 +10i-33Vi+36
_12[[1_ (6i —33/i + 36) ]

5

i? — 5732 +10i - 33/i + 36

i=2
But

n . .
OS,I,imH(l_.z 6i —331i+36 )

=35 5P3/2 4 10i —331/i + 36

H 24 25 n- 24
< - = = .
I!I—I:Do <1 ) [!—»oo 25 26 n r!n—mo n 0

i=25

X,(IN)-0

Hence lim Py

n—oo

= 0. Therefore, using definition 1.5, the new three-step implicit iteration (IN)

converges faster than the implicit Mann iteration (IM) to the fixed-point p = 0.

Similarly, using (3.5) and (3.7), we arrive at

wn NG (G5)-16)

with

0<l|mH \/ slimH(l—l) l|m24 25...n_1_l|mﬁ=o.
n—oo 1_4\/—+3 n—»ooi:25 ] n—-oo 25 26 n n—-oco N
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X, (IM)—0

o | = 0. That is implicit Mann iteration (IM) converges faster than the explicit

Therefore lim

n—oo

Mann iteration (M) to the fixed-point p = 0.

Also, using (3.6) and (3.8), we get
X,(N) " < P2 — 4 )(i—\ﬁ+3> Ty PP 3PP 4P 4P 12
XD L5\ P2 _iv+64/i-9 i—4\/i 235 7% — 42 — 2 + 4% + 6P + 361/

_ H *2 — 512 + 7177 —12i _ H 1B +120)
- P2 524102 i°? — 5% 4+ 102

i=25 i=25

with

n -3/2 . n
0< lim [1 - OGP +12) ] < lim (1 - 1.) <0
n—>e; (P"* = 5i* + 1073 | 7 n=e; i

i=25 i=25

which implies

x,(IN) -0
x, -0

Therefore, the new three-step iteration converges fast as compared to two-step implicit Ishikawa-

type iteration.

Using computer programming in C++, the convergence speed of various iterations is compared
and observations are listed in the Table 1 by taking initial approximation x, = 1, T(X) = f and

n

a =p =y =1- =, n> 25 The table reveals that newly introduced implicit iteration has bet-
n n n

ter convergence rate as compared to implicit Ishikawa-type iteration, implicit Mann iteration as well
as explicit Mann iteration and implicit Mann iteration converges faster than corresponding explicit

Mann iteration to the fixed-point p = 0.

Table 1. Comparison of convergence rate of new iteration with other iterations

Number of Mann iteration Implicit Mann Implicit Implicit new
iterations (n) (M) iteration (IM) Ishikawa type iteration (IN)
iteration (II)

25 0.4 0.25 0.217391 0.206612
26 0.164661 0.0670294 0.0509705 0.0460629
27 0.0695938 0.0191074 0.0127723 0.0109812
28 0.0301378 0.00575025 0.0033952 0.00277867
29 0.0133485 0.00181636 0.000951573 0.000741746
30 0.00603721 0.000599294 0.000279742 0.000207812
31 0.00278426 0.000205692 8.58832e-005 6.08396e-005
32 0.00130768 7.31828e-005 2.74322e-005 1.85426e—005
33 0.000624769 2.69091e-005 9.08659e-006 5.8642e-006
34 0.000303328 1.01987e-005 3.11239e-006 1.91897e-006
35 0.000149513 3.97501e-006 1.09965e-006 6.48125e—007
36 7.47563e-005 1.59e-006 3.99872e-007 2.25435e-007
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4. Data dependence of implicit iteration in hyperbolic spaces

THEOREM 4.1 Let T:K — K be a mapping satisfying (1.7). Let T, be an approximate operator of T as in
Definition 1.7, and (X} 5, {U,}}, be two implicit iterations associated to T, T, and defined by

X, =Wk, _,Ty,,a,)

y,=W@,Tz,8) (4.1)
z, =W, Tx,,7,)

and

u, =W, ,,T,v,,a,)
v,=Ww,T,w,p) 2
w,=Wu,Tu,7,) (4.2)
respectively, where a, > , .~ andy,>  are real sequences in [0, 1] satisfying 3’ (1 —a,) = co.
Letp =Tp and q = T,q,, then for ¢ > 0, we have the following estimate: n=0

E
(1-a?

dip,q) <

Proof Using Definition 1.2, iterations (4.1) and (4.2) yield the following estimates:

dix,u) =dWx,_, Ty, a), W, ,T,v,, ) < a,dx, ;,u, )+ (1 —a)dTy,T,v,)
<a,dx, ;,u, )+ A - )dTy, T,y,)+dTy,T,v)}

<a,dx, ;,u, )+ A —a)e+ody,T,y,)+ady,,v,)} (4:3)
<a,dx, ,u, )+ —a)e+ 1 —-a)edy,,T,y,)+ 1 -a)ady,,v,)
dy,,v,) =dW(z,,Tz,,p),Ww,T,w,,B)) < B,dz,w,)+(1-p)dTz,T,w,) (4.4)
d(Tz,,T,w,) <d(Tz,,T,z,)+d(T,z,,T,w,) < e+ @d(z,,T,z,) + ad(z,,w,) (4.5)
diz,,w,) <y, dx,u)+1—-y,)dTx,T,u,) (4.6)
d(Tx,, T,u,) <d(Tx,, T,x,)+d(T,x,, T,u,) <e+edx,T,x,)+ad(x,,u,) (4.7)

Using (4.3)-(4.7), we arrive at

d(Xn’ un) < and(xn—l’ un—l)
+Hal —a )by, —a*(1—a)f,(1-7,)
—-a*(1—a,)(1 =By, — a1 -a,)(1-B)1-y)dXx,,u,
+(1 =)@’ (1 = )1 =y, )pd(x,,, X)) + @d(y,,, T,y,) +a(l - p)d(z,,T,2,)}
+(1—aefal - p)+a*(1 - )1 -y,)+1}

which further implies

d(x,, u)I1 = a(l = a ) {B,r, + aB,(1 —y,) + a1 = B )y, +a*(1 = f)1 —y)}]
< and(Xn—l’ un—l)
+(1 - a){a*(1 = B)(1 = y)ed(x,, T,X,) + @d(y,, Ty,) + a1 - f)ed(z,, T,2,)} (4.8)
+(1 - ae{a(l - )+ a*1 - g1 -7, +1}

and so
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dx,,u.)
< %o dx ,,u
= [1-a-ay){f,1,+ah,(1-r,)+a(1—f,)7,+a*1=f,)(1-7,))] Xn-1 Up 1)
+ (1=a ) {@*(1=,)A=y)ed(x,,T; X )+ed(y,,T,y,)+a(1-f, )edz,,T,2,}) (4.9)
[1-a(l-a,){8,r,+ap,(1=y,)+a(1—p,)r,+a*(1-f,)(1—y,)}]
(1-ay)e{a(l=,)+a* (1-p,)(1-y,)+1}

[1-a(l-a,){B,7,+ap, (1=, )+a(1=p )y, +a* (1= )(1-y)}1

let& = %
D, [1-a(1-a,){B,r,+ap,(1=7,)+a(1-B, )y, +a*(1-4,)(1-r,)}]

then

1-% = 1-a(1—a,) (8,1, +aB,(1—y,)+a(1—, )y, +0*(1=p)(1-7,)) —a,
D, [1-a(l-a,){B,7,+aB,(1~y,)+a(1=F,)y,+a*(1-,)(1-y,)}]
>1-[a1l-a)+a,]

which further implies

C
D—” <al-a)+a,=1-(1-a)l-aq) (4.10)

Using (4.10), (4.9) becomes

dix,,u) <[1-(1-a)1-aldXx, ,u, ;)
a*(1 - 41 - y)ed(x,, T,X,)
+od(y,, T,y,) +a(l - p)edz,,T,z,) + 3¢ (4.11)

(A-a)1-a(1-a,){B,7,+aB,(1-y,)+a(1-p,)y,+a* (1-p,)1-y,)}]

(1-a,)(1-0)

+

Now, it is easy to see that

[1-a(l = a){B,r, +aB,(1 = 7,) +a(L = By, +a* (1 = f)(1 = y,))]
=M1-al-a){1-A-p)A-DH1-A-r)d-a)}121-a

and hence

1 < 1
1-aQ-a)1-A-)1-H{1-A-y)1-a)}] " 1-a

So, (4.11) becomes

dix,u) <[1-(1-a)1-aldx, ,u, ;)

a*(1 - 41 - y)ed(x,, T,X,)

+od(y,, T,y,)+a(l — g )ed(z,,T,2,)+ 3¢
(1-ay

(1-a,)(1-a) (4.12)

+

or

a,<(1-rpa,_,+r.t,

where

a,=dx,u), r,=1-a)1-a)

and
a*(1 - )1 —y)ed(x,,T,X.)
3 +(pd(yn, T.y,)+al— ﬂn)(pd(Zn, T,z2)+ 3¢
" 1-ay
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Now, from Theorem 2.1, we have lim d(x,,p) =0, lim d(u,,p) =0 and since ¢ is continuous,
nN—oo nN—oco

hence rl,im pd(x,,Tx,) = 'gim pd(y,, Ty,) = Aim @d(z,,Tz,) = 0.

Therefore, using Lemma (1.8), (4.12) yields

3¢

dpp,q) < ——
Po < =

Remark 4.2 Puttingy =g =1andy, =1in(4.1) and (4.2), respectively, data-dependence results for
implicit Mann iteration and implicit Ishikawa-type iteration can be proved easily on the same lines

as in Theorem 4.1.
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